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Abstract

The privacy risks inherent in the release of a large number of summary statistics were
illustrated by Homer et al. (PLoS Genetics, 2008), who considered the case of one-way
marginals of SNP allele frequencies obtained in a genome-wide association study: Given a
large number of minor allele frequencies from a case group of individuals diagnosed with a
particular disease, together with the genomic data of a single target individual and statistics
from a sizable reference dataset independently drawn from the same population, an attacker
can determine with high confidence whether or not the target is in the case group.

In this work we describe and analyze a simple attack that succeeds even if the summary
statistics are significantly distorted, whether due to measurement error or noise intentionally
introduced to protect privacy. Our attack only requires that the vector of distorted summary
statistics is close to the vector of true marginals in `1 norm. Moreover, the reference pool
required by previous attacks can be replaced by a single sample drawn from the underlying
population.

The new attack, which is not specific to genomics and which handles Gaussian as well as
Bernouilli data, significantly generalizes recent lower bounds on the noise needed to ensure
differential privacy (Bun, Ullman, and Vadhan, STOC 2014; Steinke and Ullman, JPC 2017),
obviating the need for the attacker to control the exact distribution of the data.

*A preliminary version of this work appeared in FOCS 2015.
†Harvard University. Part of this work was done while at Microsoft and while visiting the Simons Institute for

the Theory of Computing. Cynthia Dwork was supported by the Simons Foundation and by the DIMACS/Simons
Collaboration in Cryptography through NSF grant CNS-1523467. dwork@seas.harvard.edu

‡Boston University. Part of this work was done while at Pennsylvania State University and while visiting Harvard
University’s Center for Research on Computation & Society, where he was supported by a Simons Investigator award
to Salil Vadhan. Adam Smith was supported by NSF award IIS-1447700 and a Google Faculty Award. ads22@bu.edu

§IBM Research – Almaden. Part of this work was done while at Harvard University. Thomas Steinke was
supported by NSF grants CNS-1237235, CCF-1116616, and CCF-1420938. tracing@thomas-steinke.net

¶Northeastern University. Jonathan Ullman was supported by a Junior Fellowship from the Simons Soci-
ety of Fellows. Part of this work was done while the author was a postdoctoral fellow at Columbia University.
jullman@ccs.neu.edu
‖Harvard University. Salil Vadhan was supported by NSF grant CNS-1237235, a gift from Google, Inc., and a

Simons Investigator grant. salil vadhan@harvard.edu

dwork@seas.harvard.edu
ads22@bu.edu
tracing@thomas-steinke.net
jullman@ccs.neu.edu
salil_vadhan@harvard.edu


Contents

1 Introduction 1
1.1 Model and Assumptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.2 Our Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.3 Description of The Attack . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.4 Comparison with Previous Work . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2 Tracing with a Single Reference Sample 6
2.1 Soundness Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.2 Correlation Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.3 Completeness Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.4 Interpreting Strong Distributions . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

3 Tracing from Fewer Statistics 17
3.1 Soundness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
3.2 Correlation Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

4 Extensions 22
4.1 Robustness: Mechanisms with `1-Bounded Error . . . . . . . . . . . . . . . . . . 22
4.2 Generalizations to Real-Valued Data . . . . . . . . . . . . . . . . . . . . . . . . . 23

4.2.1 Soundness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
4.2.2 Proving Correlation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
4.2.3 Completeness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

References 26

A Concentration Bounds 29
A.1 Concentration of 2-Norm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
A.2 Proofs of Concentration Lemmas . . . . . . . . . . . . . . . . . . . . . . . . . . . 34



1 Introduction

Given a collection of (approximate) summary statistics about a dataset, and the precise data of a
single target individual, under what conditions is it possible to determine whether or not the
target is a member of the dataset? This tracing problem is the focus of our work.

Questions of this type arise in many natural situations in which membership in the dataset
is considered sensitive; indeed, this is typically the reason for choosing to publish summary
statistics, as opposed to releasing the raw data. In a scenario that is prominent in the literature,
the dataset contains genomic information about a case group of individuals with a specific
medical diagnosis, as in a genome-wide association study (GWAS), and the summary statistics
are SNP allele frequencies, i.e. one-way marginals. Specifically, if each person’s data consists of
d binary attributes, we consider a mechanism that releases (an approximation to) the average
value of the each of the d attributes. Homer et al. [HSR+08] demonstrated the privacy risks
inherent in this scenario, presenting and analyzing a tracing algorithm for membership in a
GWAS case group, provided the attacker also has access to allele frequencies for a reference
group of similar ancestral make-up as that of the case group.

It came as a surprise to the genomics research community that the trace amount of DNA
contributed by an individual is enough to determine membership in the case group with high
statistical confidence. The result had a major practical impact in the form of very restrictive
policies governing access to allele frequency statistics in studies funded by the US National
Institutes of Health and the Wellcome Trust. Follow-up analytical works provide alternative
tests and asymptotic analyses of tradeoffs between the size of the test set, the size of a reference
dataset, power, confidence, and number of measurements [SOJH09].

As in the follow-up works, the analysis in Homer et al. assumes that exact statistics are
released, leaving open the possibility that the attack may be foiled if the statistics are distorted,
for example, due to measurement error (which can be highly correlated across the statistics), or
because noise is intentionally introduced in order to protect privacy.

In this paper, we show that one can test if an individual is present in the case group even
when the one-way marginals are considerably distorted before being released. We give a single
tracing attack that applies to all mechanisms that produce sufficiently accurate estimates of the
statistics in question, rather than to just the single mechanism that outputs exact statistics.

A line of work initiated by Dinur and Nissim [DN03] provides attacks of this flavor for
certain kinds of statistics, showing that all mechanisms that release “too many” answers that
are “too accurate” are subject to devastating “reconstruction attacks,” which allow an adversary
to determine the private data of almost all individuals in a dataset. These attacks, which imme-
diately give lower bounds on noise needed to avoid blatant non-privacy, have been extended in
numerous works [DMT07, DY08, KRSU10, De12, KRS13, MN12, FMN13, NTZ13].

These reconstruction attacks do not generally apply in the setting of Homer et al., since
they either require that the amount of noise introduced for privacy is very small (less than the
sampling error), or require an exponential number of statistics, or do not apply to statistics that
are as simple (namely, attribute frequencies), or require that the adversary have a significant
amount of auxiliary information about the other individuals in the dataset.

Of course, complete reconstruction is an extreme privacy failure: the privacy of essentially
every member of the dataset is lost! Conversely, protection from complete reconstruction is a
very low barrier for a privacy mechanism. What if we are more demanding, and ask that an
attacker not be able to determine whether an individual is present or absent from the dataset,
that is, to trace? This in/out protection is the essence of differential privacy, and the question
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of how much noise is needed to ensure differential privacy, first studied in [HT10], has seen
many recent developments [Ull13, BUV14, DNT14, HU14, SU14, SU17]. By shifting the goal
from reconstructing to tracing, these works obtain lower bounds on noise for settings where
reconstruction is impossible.

In particular, the papers [BUV14, SU17] provide tracing attacks, based on the use of finger-
printing codes [BS98, Tar08], that operate given attribute frequencies of the database with only
non-trivial accuracy. However, they require that the attribute frequencies of the underlying
population are drawn from a particular, somewhat unnatural distribution, and that the attacker
has very accurate knowledge of these frequencies. We remark that such knowledge is the
“moral equivalent,” in this literature, to having a large reference population, in the genomics
literature.

In this paper, we generalize the attacks based on fingerprinting codes in several ways to
considerably broaden their applicability:

• The population’s attribute frequencies can be drawn from any distribution on [0,1] that is
sufficiently smooth and spread out, including, for example, the uniform distribution on
[0,1] or a large subinterval. The tracing algorithm does not depend on the distribution.

• Instead of knowing the population attribute frequencies, it suffices for the attacker to have
a single reference sample from the population.

• We show that similar attacks can be applied to Gaussian data (rather than binary data) for
mechanisms that release too many attribute averages with nontrivial accuracy.

Our results provide a common generalization of the fingerprinting results and the results of
Homer et al, showing they are special cases of a much broader phenomenon.

Like the fingerprinting attacks of [BUV14, SU17], the lower bounds on noise implied by our
attacks nearly match the upper bounds on noise sufficient to ensure the strong guarantees of
differential privacy, for example, via the Gaussian or Laplace mechanisms [DN03, BDMN05,
DMNS06, DKM+06, DRV10]). Thus, the cost in utility for avoiding our attacks is nearly the
same as the cost for avoiding the much larger class of attacks that differential privacy prevents,
where the dataset can be arbitrary and the attacker can know everything about it, except whether
or not the target individual is present in the dataset.

1.1 Model and Assumptions

Distributional Assumption. The database consists of n independent samples from a popu-
lation, which is given by a product distribution Pp on {±1}d . The vector p ∈ [−1,1]d specifies
the expectation of a sample from Pp. That is, to sample x ∼ Pp, we set xj = 1 with probability
(1 + pj )/2 and set xj = −1 with probability (1− pj )/2, independently for each j.

The vector p represents unknown statistics about the population; p is unknown to both the
mechanism and the privacy attacker.1 The vector p is itself drawn from the product distribution
D on [−1,1]d with the jth marginal having probability density function ρj : [−1,1]→ R. In the
case of genomics, we can think of the distribution D as capturing, for example, differences
between populations (although of course in reality this would not be a product distribution).
Our attacks will succeed even if the mechanism knows D but the attacker does not, provided
each ρj is sufficiently smooth and spread out e.g., if ρj is uniform on a large enough subinterval
of [0,1]).

1If the mechanism knows p then the problem becomes vacuous: it could simply ignore the data and publish p.
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Accuracy of the Mechanism. The (possibly randomized) mechanismM receives n independent
samples x1, · · · ,xn ∈ {±1}d drawn from Pp (after p is initially drawn fromD), and outputs a vector
q ∈ [−1,1]d with q ≈ x̄ = 1

n

∑
i∈[n] xi ≈ p. That is,M provides approximate one-way marginals. We

sayM is α-accurate if for all j ∈ [d] we have
∣∣∣∣E [

qj
]
− pj

∣∣∣∣ ≤ α for all possible values of p, where

the expectation is taken over the randomness ofM and the sample x. We require this to hold
even when we condition on xj

′
and qj

′
for j ′ , j. This is a very weak accuracy requirement, as

it only refers to the bias of the statistics, namely E [q]− p. We also require that q is bounded in

[−1,1]d , so if the mechanism adds unbounded noise, we should truncate the answers, which
may increase the bias.

The Attacker. The privacy attacker A receives two samples in {±1}d , the target y and the
reference z, where z is drawn independently from the population Pp, together with the output q
ofM on a dataset x1, . . . ,xn, and produces an answer, either IN or OUT. The attacker’s answer
indicates whether or not it believes y is among the x1, · · · ,xn given to M. The attacker is
guaranteed that the reference sample z is drawn from Pp independent from everything else. The
attacker must satisfy two properties:

• Soundness: If y is drawn from Pp independent from the view ofM (i.e. independent from
q), then A should output IN with probability at most s.

• Completeness: Choose i uniformly from [n] and set y = xi . Then A should output IN with
probability at least c. The probability is over all the random choices: i, x, z, and the coin
flips of A andM.

These conditions are interesting when c� s, as when c ≤ s they are trivially satisfied by having
A always output IN with probability c. To interpret this, think of y as the data of a member of
the population and A wants to determine whether or not y is in the dataset (case group) given
toM. For A to be considered successful we require that it can identify a random member of the
dataset with reasonably high probability (given by the completeness parameter c), whilst, if y
is not in the dataset, it is erroneously claimed otherwise with negligible probability (given by
the (un)soundness parameter s). The reference sample z is some minimal auxiliary information
about the population that A can use.

1.2 Our Results

Theorem 1 (Main – Informal). There is a universal constant α > 0 such that for every δ > 0, n ∈ N,
and d ≥O(n2 log(1/δ)), there exists an attackerA : {±1}d×[−1,1]d×{±1}d → {IN,OUT} the following
holds.

Let D be a product distribution on [−1,1]d such that each marginal satisfies a technical smooth-
ness condition (Definitions 5 and 26). LetM : {±1}n×d → [−1,1]d be α-accurate. Let p ∼ D and
x1, · · · ,xn, y,z ∼ Pp. Let q ∼M(x1, · · · ,xn). Then

P [A(y,q,z) = IN] ≤ δ and P [∃ i ∈ [n] A(xi ,q,z) = IN] ≥ 1− δ.

Thus, if the first input (y) to A is a random independent element of the population, then A
will accept with probability at most s ≤ δ (the probability space includes the selection of y), but
if the first input is a random element of the dataset (xi for a random i), then A will accept with
probability at least c ≥ (1−δ)/n. Thus, the result is nontrivial when δ < (1−δ)/n (e.g. δ = o(1/n)).
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We discuss a number of features and extensions of the result.

Dimensionality Needed. The dimensionality d of the data needed for the attack is d = Õ(n2)
for δ = 1/2n, which is tight up to polylogarithmic factors for achieving constant accuracy α.
Indeed, it is possible to answer d = Ω̃(n2) one-way marginals with accuracy α = o(1), while
satisfying the strong guarantee of (o(1),1/nω(1))-differential privacy [DN03, BDMN05, DKM+06,
DMNS06, DRV10].2 (Our attack implies that no mechanism satisfying the above conditions
can be (0.1,1/4n) differentially private.) For the one-way marginals we consider, the number of
statistics released equals the dimensionality d of the data, but for richer families of statistics,
the dimensionality is the more significant parameter. Indeed, many more than n2 statistics
can be released if the dimensionality d of the data is smaller than n2—the algorithms of
[BLR08, HR10, RR10, DRV10] can release a number of statistics that is nearly exponential in
n/
√
d.

Beyond the d = Θ(n2) Barrier. The price for our very weak assumptions – weakly accurate
answers and only a single reference sample – is that we (provably) need d = Ω(n2) and can only
trace a single individual. With more accurate answers and a larger reference pool, a slightly
modified version of our attacker can trace with smaller d, and can trace many individuals in
the dataset: if the mechanism is α-accurate (for some α ≥ n−1/2), and we are given roughly
1/α2 independent reference samples from the distribution, then we trace when the dataset has
dimension onlyO(α2n2). Moreover, we can successfully trace Ω(1/α2) individuals in the dataset,
yielding a completeness probability of c = Ω(1/α2n) (Section 3).

Weaker Soundness Conditions. The soundness of our attack does not rely on any properties
of the distributionD, the accuracy ofM, the relation between d, n, and δ, or even the distribution
of the rows x1, . . . ,xn. It only requires that conditioned on q, the individuals y and z are sampled
independently from the same product distribution. Thus, the attack can be carried out under
only the latter assumption, and if it says IN, one can safely conclude y ∈ {x1, . . . ,xn}.

Higher-Power Attacks. Our completeness probability of c = Θ(1/α2n) is essentially tight, as a
mechanismM that outputs the averages on a subsample of size O(1/α2) will be accurate but
only allows tracing at most an O(1/α2n) fraction of individuals in the dataset

However, if we assume that M is symmetric, then we can get around this. That is, if we
assume thatM can be written asM(x1, · · · ,xn) =M′(x) (where x = 1

n

∑
i∈[n] xi ∈ [−1,1]d is the

average of the sample), then we can prove that

∀i ∈ [n] P [A(xi ,q,z) = IN] ≥ 1− δ.

Note that with this high-power guarantee (c ≥ 1 − δ), it is meaningful to take δ to be a fixed
constant (e.g. the standard significance level of .05).

2An algorithm that operates on datasets is (ε,δ)-differentially private if for all datasets S,S ′ differing in the data
of a single individual and every event E, the probability of E when the dataset is S is at most δ plus eε times the
probability of E when the dataset is S ′ .
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The Distribution D. As noted above, we impose a technical regularity condition on the
distribution D, requiring that its marginals ρj are sufficiently smooth and spread out. This
includes distributions such as the uniform distribution on a large subinterval and the family of
Beta distributions.

Some assumptions on D are necessary. For example, if each marginal ρj were supported
on a subinterval of length at most α, then the mechanism could give accurate answers by
just producing a vector q ∈ [−1,1]d in the support of D and not using the dataset at all. This
shows that the ρj need to be sufficiently “spread out”. To see why “smoothness” is necessary,
suppose that ρj were concentrated on two points p∗ and p∗∗ that are reasonably far apart (farther
than 2α). Then the mechansim can simply test whether the average of the data elements exceeds
(p∗ + p∗∗)/2 and, if so, output max{p∗,p∗∗}; otherwise output min{p∗,p∗∗}. While this mechanism
is not differentially private (a guarantee against tracing in the worst case), with high probability
over the choice of the dataset this mechanism is insensitive to small changes in the dataset, i.e.,
changing one row will not change the output. This makes tracing impossible.

Real-Valued Data. In many settings, the database takes values in Rn×d rather than {±1}n×d .
We show that, if the data x1, · · · ,xn are independent samples from a multivariate Gaussian (with
no covariances), the same attack can be carried out. We require an upper bound σ2

max on the
variance of the data entries and assume that the coordinate means are again drawn from a
smooth and spread out distribution. In this setting we require d =O(n2σ2

max log(1/δ)).

1.3 Description of The Attack

Like the attacks in previous tracing work for the genomic setting [HSR+08, SOJH09, BRS+09,
JYW+09, ZPL+11] and in the fingerprinting setting [Tar08, SU14], our attack uses a simple
scoring function to make its decision. The scoring function works incrementally, with each
marginal (SNP) making a separate contribution. The attack is described in full in Figure 1.

Aδ,d(y,q,z)

1. Input: y,z ∈ {±1}d and q ∈ [−1,1]d.

2. Compute 〈y,q〉 =
∑
j∈[d] y

j · qj and 〈z,q〉 =
∑
j∈[d] z

j · qj.

3. If 〈y,q〉 − 〈z,q〉 > τ :=
√

8d ln(1/δ), output IN; otherwise output OUT.

Figure 1: Our Privacy Attack

The key features of the adversary are that it only sees the data of the user y being traced,
plus a reference sample z (in addition, of course, to seeing the output q), and does not depend
on the mechanismM, the unknown mean p, or the distribution D on p.

1.4 Comparison with Previous Work

As mentioned above, our model and results provide a common generalization of lines of work
from several fields.

• Work in the genomics community [HSR+08, BRS+09, VH09, SOJH09, JYW+09] has so
far focused on the case where exact statistics are available to the attacker (α = 0 in our

5



formalism). With a reference sample of Ω(n) individuals, they showed that d = Θ(n)
attributes are necessary and sufficient, while with a constant-sized reference pool, d =
Θ(n2) is required [SOJH09]). Our first attack uses Θ(n2 · logn) statistics with a reference
pool of size 1, and makes only a minimal accuracy assumption (a constant bound α on the
bias).
Our second attack requires only d = Õ(α2n2) statistics if the mechanism is α-accurate (for
some α ≥ n−1/2) and the reference pool is of size O(log(n)/α2), in which case it can also
successfully trace Ω(1/α2) individuals in the dataset.
Im et al. [IGNC12] use (exact) regression coefficients instead of marginals as the basis of
an attack, with similar results to the case of marginals.

• Work on fingerprinting attacks [BUV14, SU17] corresponds to our setting of a constant α,
but assumes that p is drawn from a specific distribution D, and the attacker A knows p
exactly (essentially, an infinite reference pool). The dimensions required in their attacks
are similar to ours (d = Θ(n2)).

We note that previous work has focused on categorical data, but our results extend to the setting
of normally-distributed real-valued data.

Other Work on Genetic Privacy. The literature contains attacks based on various types of
published aggregate statistics, e.g., allele frequencies, genetic frequencies, and various quantitive
phenotypes such as cholesterol levels [HSR+08, JYW+09, WLW+09, IGNC12]; see [EN14] for a
survey. Particularly exciting (or troubling) is the work of Wang et al. [WLW+09] that exploits
correlations among different SNPs. Not only do their attacks require relatively few SNPs, but
they go beyond in/out privacy compromise, actually reconstructing SNPs of members of the case
group. In our view, the message of these works and ours, taken as a whole, is that information
combines in surprising ways, aggregation should not be assumed to provide privacy on its own,
and rigorous approaches to controlling privacy risk are necessary.

2 Tracing with a Single Reference Sample

Now we analyze our attack (given in Figure 1) and thereby prove Theorem 1.

2.1 Soundness Analysis

Proposition 2 (Soundness). Let q,p ∈ [−1,1]d . Suppose y,z ∼ Pp are independent from each other
and from q. Then

P
[
Aδ,d(y,q,z) = IN

]
≤ δ.

Proof. We can view p and q as fixed. Since y and z are identically distributed, E [〈y,q〉 − 〈z,q〉] = 0.

Since y and z are independent samples from a product distribution, we have that 〈y,q〉 − 〈z,q〉 =∑
i∈[d](y

j − zj ) · qj is the sum of 2d independent random variables each of which is bounded by
max{

∣∣∣∣∣∣y∣∣∣∣∣∣∞ , ||z||∞} · ||q||∞ ≤ 1. Thus, by Hoeffding’s inequality,

P [〈y,q〉 − 〈z,q〉 > τ] ≤ e−τ
2/4d = δ,

as required.
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Remark 3. Proposition 2 makes no assumptions about q. Thus soundness holds even ifM is not
accurate or if y,z are not sampled from the true population – they need only be sampled from the same
product distribution.

2.2 Correlation Analysis

To prove completeness we must show that 〈xi ,q〉 − 〈z,q〉 > τ with good probability for a random
i ∈ [n] when the mechanism’s output is α-accurate. First we give a formal definition of accuracy:

Definition 4 (Accuracy). We sayM : {±1}n×d → [−1,1]d is α-accurate if

||M(x)− x||∞ ≤ α

for all x ∈ {±1}n×d , where x ∈ [−1,1]d is the average of the rows of x.

Note that, for simplicity, we assume the accuracy condition holds with probability 1. How-
ever, a high probability bound would suffice, but we would need to carry an extra parameter
through our analysis.

In Section 4.1, we discuss mechanisms that satisfy a weaker “`1” accuracy condition.
We begin by showing that, under our regularity assumption on D,

E

∑
i∈[n]

(〈xi ,q〉 − 〈z,q〉)

 ≥ Cnτ
for an appropriate constant C > 1.

Intuitively,
∑
i∈[n]〈xi ,q〉 measures how much the output q ∈ [−1,1]d ofM correlates with

the input x1, · · · ,xn ∈ {±1}d ofM, whereas 〈z,q〉measures how much a random member of the
population correlates with q. Thus we are proving that the output ofM is more correlated with
the input ofM than with an independent sample from the population.

By linearity of expectations it suffices to show that E
[∑

i∈[n] x
j
i q
j − zjqj

]
≥ Cnτ/d for each

j ∈ [d]. We now focus on a fixed j ∈ [d] and, for clarity, omit the superscript.
First some notation: Let p ∼ ρ denote that p ∈ R is drawn according to the probability

distribution given by ρ (e.g. ρ is a probability density function ρ : R→ R). For p ∈ [−1,1], let
x ∼ p denote that x ∈ {±1} is drawn with E [x] = p. Let x1···n ∼ ρ denote that x1, · · ·xn ∈ {±1} are

drawn independently with xi ∼ ρ for each i ∈ [n].
The regularity condition we need is the following.

Definition 5 (Strong Distribution). Let ρ be a probability distribution on [−1,1]. Define hρn :
{−n− 1,−n+ 1, · · · ,n+ 1} → R by

h
ρ
n(t) =

(n+ 1 + t)(n+ 1− t)
2(n+ 1)

· P
p∼ρ,x1···n+1∼p

 ∑
i∈[n+1]

xi = t

 .
We say ρ is (ξ,n)-strong if ∑

t∈{−n,−n+2,··· ,n}

∣∣∣hρn(t − 1)− hρn(t + 1)
∣∣∣ ≤ ξ.

We say ρ is ξ-strong if ρ is (ξ,n)-strong for all n.
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We give some meaning to this technical definition in Section 2.4. Intuitively, it suffices for a
distribution to have a “smooth” probability density function that is sufficiently “spread out.” In
particular, the uniform distribution on [−1,1] is 1-strong.

Now we relate the definition of a strong distribution to the correlation quantity of interest:

Lemma 6. Let ρ be a (ξ,n)-strong probability distribution on [−1,1]. Let f : {±1}n→ [−1,1]. Then∣∣∣∣∣∣∣∣ E
p∼ρ,x1···n∼p,z∼p

f (x)
∑
i∈[n]

(xi − z)


∣∣∣∣∣∣∣∣ ≤ ξ.

Furthermore, this is tight – that is, ρ is (ξ,n)-strong if and only if the above holds for all f .

Proof. Define a random variable S
ρ
n on {−n− 1,−n+ 1, · · · ,n− 1,n+ 1} as follows. First sample

p ∼ ρ. Then sample x1···n+1 ∼ p and let S
ρ
n =

∑n+1
i=1 xi .

Firstly, by symmetry the following are equivalent ways of sampling random variables
x1, · · · ,xn, z.

• Sample p ∼ ρ. Then sample x1···n ∼ p and z ∼ p.

• Sample s ∼ Sρn . Then sample x1, · · · ,xn, z ∈ {±1} uniformly at random conditioned on
z+

∑
i∈[n] xi = s.

• Sample s ∼ Sρn . Then sample z ∈ {±1} with E [z] = s
n+1 . Then sample x1, · · · ,xn ∈ {±1}

uniformly at random conditioned on
∑
i∈[n] xi = s − z.

Thus we can rewrite the expectation using S
ρ
n :

E
p∼ρ,x1···n∼p,z∼p

f (x)
∑
i∈[n]

(xi − z)

 = E
s∼Sρn

 E
z∼ s

n+1

 E
x∈{±1}n:

∑
i∈[n] xi=s−z

f (x)
∑
i∈[n]

(xi − z)





= E
s∼Sρn

[
E

z∼ s
n+1

[
E

x∈{±1}n:
∑
i∈[n] xi=s−z

[f (x)] (s − z −nz)
]]

= E
s∼Sρn

[
E

z∼ s
n+1

[g(s − z)(s − z −nz)]
]
,

where g : {−n, · · · ,n} → [−1,1] given by

g(t) := E
x∈{±1}n:

∑
i∈[n] xi=t

[f (x)]

8



is the symmetrization of f . Now we expand the expectations as sums:

E
s∼Sρn

[
E

z∼ s
n+1

[g(s − z)(s − z −nz)]
]

= E
s∼Sρn


P

z∼ s
n+1

[z = 1] · g(s − 1)(s − 1−n)

P
z∼ s

n+1

[z = −1] · g(s+ 1)(s+ 1 +n)


= E
s∼Sρn

 n+1+s
2(n+1) · g(s − 1)(s − 1−n)
n+1−s
2(n+1) · g(s+ 1)(s+ 1 +n)


= E
s∼Sρn

[
(n+ 1 + s)(n+ 1− s)

2(n+ 1)
· (g(s+ 1)− g(s − 1))

]
=

1
2(n+ 1)

∑
s∈{−n+1,−n+3,··· ,n−1}

P
[
S
ρ
n = s

]
· (n+ 1 + s)(n+ 1− s) · (g(s+ 1)− g(s − 1))

=
1

2(n+ 1)

∑
t∈{−n+2,−n+4,··· ,n}

P
[
S
ρ
n = t − 1

]
· (n+ t)(n− t + 2) · g(t)

− 1
2(n+ 1)

∑
t∈{−n,−n+2··· ,n−2}

P
[
S
ρ
n = t + 1

]
· (n+ t + 2)(n− t) · g(t)

=
1

2(n+ 1)

∑
t∈{−n,−n+2,··· ,n}

g(t) ·

 P
[
S
ρ
n = t − 1

]
· (n+ t)(n− t + 2)

−P
[
S
ρ
n = t + 1

]
· (n+ t + 2)(n− t)


=

∑
t∈{−n,−n+2,··· ,n}

g(t) · (h(t − 1)− h(t + 1)),

where h is as in Definition 5. Now we can apply Hölder’s inequality with the definitions of a
strong distribution and g to conclude:∣∣∣∣∣∣∣∣ E

p∼ρ,x1···n∼p,z∼p

f (x)
∑
i∈[n]

(xi − z)


∣∣∣∣∣∣∣∣ =

∣∣∣∣∣∣ E
s∼Sρn

[
E

z∼ s
n+1

[g(s − z)(s − z −nz)]
]∣∣∣∣∣∣

=

∣∣∣∣∣∣∣∣
∑

t∈{−n,−n+2,··· ,n}
g(t) · (h(t − 1)− h(t + 1))

∣∣∣∣∣∣∣∣
≤‖g‖∞

∑
t∈{−n,−n+2,··· ,n}

|h(t − 1)− h(t + 1)|

≤ξ.

Note that there exists a g that makes this inequality tight, namely

gtight(t) = sign(h(t − 1)− h(t + 1)) .

Setting ftight(x) = gtight

(∑
i∈[n] xi

)
shows that the lemma is tight.

Now we translate Lemma 6 into the form we will use:

Corollary 7. Let ρ be a (ξ,n)-strong probability distribution on [−1,1]. Let M : {±1}n→ R satisfy
|M(x)− x| ≤ α for all x ∈ {±1}n. Then

E
p∼ρ,x1···n∼p,z∼p

M(x)
∑
i∈[n]

(xi − z)

 ≥ E
p∼ρ

[
1− p2

]
−αξ.
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Proof. Write M(x) = x −α · f (x) for some f : {±1}n→ [−1,1]. Now

E
p∼ρ,x1···n∼p,z∼p

M(x)
∑
i∈[n]

(xi − z)

 = E
p∼ρ,x1···n∼p,z∼p

x∑
i∈[n]

(xi − z)

−α · E
p∼ρ,x1···n∼p,z∼p

f (x)
∑
i∈[n]

(xi − z)


≥ E
p∼ρ,x1···n∼p,z∼p

x∑
i∈[n]

(xi − z)

−α · ξ,
by Lemma 6. All that remains is a calculation:

E
p∼ρ,x1···n∼p,z∼p

x∑
i∈[n]

(xi − z)

 = E
p∼ρ,x1···n∼p

[x · (x − p) ·n] (since E [z] = p)

= E
p∼ρ,x1···n∼p

[(x − p) · (x − p) ·n] (since E [p · (x − p)] = 0)

= E
p∼ρ

[
Var
x1···n∼p

[x] ·n
]

= E
p∼ρ

[
Var
x∼p

[x]
]

= E
p∼ρ

[
1− p2

]
.

We now make an observation that will allow the construction of a high-power attack for
symmetric M. Suppose f : {±1}n → [−1,1] can be written as f (x) = f∗

(
1
n

∑
i∈[n] xi

)
for some

f∗ : [−1,1]→ [−1,1]. Then, by symmetry, the conclusion of Corollary 7 can be altered to

∀i ∈ [n] E
p∼ρ,x1···xn∼p,z∼p

[f (x) · (xi − z)] ≥
E
p∼ρ

[
1− p2

]
−αξ

n
.

Formally, we have the following definition and Lemma.

Definition 8. A function f : Rn→ R is symmetric if there exists a function f∗ : R→ R such that
f (x) = f∗

(
1
n

∑
i∈[n] xi

)
for all x ∈ Rn.

Lemma 9. Let f : Rn → R be symmetric and let X1, · · · ,Xn ∈ R be independent and identically
distributed. Then

E
X

[
f (X)(Xk −E [Xk])

]
=

1
n
E
X

f (X)
∑
i∈[n]

(Xi −E [Xi])


for all k ∈ [n].

Proof. By Definition 8,

E
X

f (X)
∑
i∈[n]

(Xi −E [Xi])

 =
∑
i∈[n]

E
X

f∗(1
n

∑
k∈[n]

Xk)(Xi −E [Xi])

 (1)
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Since X1, · · · ,Xn are independent and identically distributed, the pair (
∑
k∈[n]Xk ,Xi) is identically

distributed for all i. Thus f∗(
1
n

∑
k∈[n]Xk)(Xi − E [Xi]), being a function of (

∑
k∈[n]Xk ,Xi), is

identically distributed for each i. Consequently, all the terms in (1) are the same, which implies
the lemma.

We can summarise our expectation bounds as follows.

Proposition 10. Suppose the distribution D is a product distribution in which each marginal ρ is
(ξ,n)-strong and satisfies E

p∼ρ

[
1− p2

]
≥ γ +α · ξ. Suppose the mechanismM : {±1}n×d → [−1,1]d is

α-accurate. Let x1, · · ·xn, z ∼ Pp and q ∼M(x1, · · · ,xn).

1. Then we have

∀j ∈ [d] E
p,x1,··· ,xn,z

∑
i∈[n]

(
〈xji ,q

j〉 − 〈zj ,qj〉
) ≥ γ.

Moreover, this bound holds even when conditioned on all the randomness in columns other than
j. That is, the bound holds when we condition on any value of p−j , {x−ji }i=1,...,n, z

−j ,q−j and the
randomness is only over the remaining variables.

2. If, in addition,M is symmetric, then

∀j ∈ [d] ∀i ∈ [n] E
p,x1,··· ,xn,z

[
〈xji ,q

j〉 − 〈zj ,qj〉
]
≥
γ

n

and hence

∀i ∈ [n] E
p,x1,··· ,xn,z,M

[〈xi ,q〉 − 〈z,q〉] ≥
γd

n
.

Proof. We view z−j ,q−j ,x
−j
i as fixed and we average over the randomness ofM. Now the only

randomness is the choice of pj and zj ,xj1 · · ·x
j
n ∼ pj . SinceM does not see pj or zj , we can write

qj = f (xj ) for some f : {±1}n→ [−1,1]. By the assumption thatM is α-accurate, |f (x)− x| ≤ α for
all x ∈ {±1}n. The result now follows from Corollary 7 and Lemma 9.

2.3 Completeness Analysis

Now that we have shown that E
[∑

i∈[n] (〈xi ,q〉 − 〈z,q〉)
]

is large, we can turn this into a high

probability statement.

Lemma 11. Suppose the distribution D is a product distribution in which each marginal ρ is (ξ,n)-
strong and satisfies E

p∼ρ

[
1− p2

]
≥ γ + α · ξ. Suppose the mechanism M : {±1}n×d → [−1,1]d is

α-accurate. Assume d > O(n2 log(1/δ)/γ2). Let x1, · · ·xn, z ∼ Pp and q ∼M(x1, · · · ,xn). Then

P
p,x1···n,z,M

∑
i∈[n]

(〈xi ,q〉 − 〈z,q〉) <
γd

2

 ≤ δ.
Moreover, ifM is symmetric, then

∀i ∈ [n] P
p,x1···n,z,M

[
〈xi ,q〉 − 〈z,q〉 <

γd

2n

]
≤ δ.
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The formal proof of this Lemma is quite involved, but unenlightening. Thus we defer it to
the appendix (page 34) and give a proof sketch here instead.

Proof Sketch. Write ∑
i∈[n]

(〈xi ,q〉 − 〈z,q〉) =
∑
j∈[d]

qj ·
∑
i∈[n]

(xji − z
j ) =:

∑
j∈[d]

Aj .

By Proposition 10, we have E
[
Aj

]
≥ γ for all j ∈ [d]. Suppose the Aj random variables were

independent. Then we could apply Hoeffding’s inequality. Using |Aj | ≤ 2n, gives

P

∑
j∈[d]

Aj −E
[
Aj

]
<
−1
2
γd

 ≤ exp
(
−

2(γd/2)2

(4n)2d

)
≤ δ,

as required. The second half of the lemma is similar.
The Aj variables are not independent, but it turns out their sum concentrates nonetheless.

The key observation is that E
[
Aj

]
≥ γ even if we condition on A1, · · · ,Aj−1,Aj+1, · · · ,Ad . Namely

E
[
Aj | A1 = a1, · · · ,Aj−1 = aj−1,Aj+1 = aj+1, · · · ,Ad = ad

]
≥ γ

for all j ∈ [d] and a ∈ Rd .

Now we can finally prove completeness.

Proposition 12 (Completeness). Suppose the distribution D is a product distribution in which each
marginal ρ is (ξ,n)-strong and satisfies E

p∼ρ

[
1− p2

]
≥ γ+α·ξ. Assume d > O(n2 log(1/δ)/γ2). Suppose

the mechanismM : {±1}n×d → [−1,1]d is α-accurate. Let x1, · · · ,xn, z ∼ Pp and q =M(x1, · · · ,xn).
Then

P
p,x1···n,z,M

[
∃i ∈ [n] Aδ,d(xi ,q,z) = IN

]
≥ 1− δ.

Proof. By Lemma 11,
∑
i∈[n] (〈xi ,q〉 − 〈z,q〉) ≥

γd
2 > n · τ = n · 2

√
d log(1/δ) with high probability.

Thus, with high probability, we have 〈xi ,q〉 − 〈z,q〉 > τ for at least one i ∈ [n].

We also state the high-power completeness we get from assuming thatM is symmetric.

Proposition 13 (High-Power Completeness). Suppose the distribution D is a product distri-
bution in which each marginal ρ is (ξ,n)-strong and satisfies E

p∼ρ

[
1− p2

]
≥ γ + α · ξ. Assume

d > O(n2 log(1/δ)/γ2). Suppose the mechanismM : {±1}n×d → [−1,1]d is α-accurate and symmetric.
Let x1, · · ·xn, z ∼ Pp and q ∼M(x1, · · · ,xn). Then

∀i ∈ [n] P
p,x1,··· ,xn,z,M

[
Aδ,d(xi ,q,z) = IN

]
≥ 1− δ.

Proof. By Lemma 11, for all i ∈ [n] we have 〈xi ,q〉 − 〈z,q〉 ≥
γd
2n > τ = 2

√
d log(1/δ) with high

probability. Thus, for all i ∈ [n], we have 〈xi ,q〉 − 〈z,q〉 > τ with high probability.
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2.4 Interpreting Strong Distributions

The notion of strong distributions is critical in the completeness analysis of our attack – it
ensures that the output of M correlates with its input. In this section we show that this
condition is met by a large class of distributions and give some intuition for its meaning. First
we restate Definition 5.

Definintion 5. Let ρ be a probability distribution on [−1,1]. Define hρn : {−n−1,−n+1, · · · ,n+1} → R
by

h
ρ
n(t) =

(n+ 1 + t)(n+ 1− t)
2(n+ 1)

· P
p∼ρ,x1···n+1∼p

 ∑
i∈[n+1]

xi = t

 .
We say ρ is (ξ,n)-strong if ∑

t∈{−n,−n+2,··· ,n}

∣∣∣hρn(t − 1)− hρn(t + 1)
∣∣∣ ≤ ξ.

We say ρ is ξ-strong if ρ is (ξ,n)-strong for all n.

First let us unpack this definition: The definition bounds the total variation of the function
h
ρ
n. So we require h

ρ
n to be smooth. The function h

ρ
n is the product of two terms. The first term

is large (at most (n+ 1)/2) in the middle of the range and smoothly decreases towards zero at
the ends of the range. The second term can be viewed as the probability mass function of a
discretization of the continuous distribution ρ: There are n+ 2 buckets {−n− 1,−n+ 1, · · · ,n+ 1}.
A sample p ∼ ρ is thrown into one of the n+ 2 buckets in a random fashion. The most likely
bucket is the one closest to (n+ 1) · p and the probability of landing in a given bucket decays
rapidly as we move away from the most likely bucket. Intuitively, being a strong distribution
simply means that neighbouring buckets should contain a similar amount of probability mass.

To gain some intuition for the meaning of the definition, we consider some example distri-
butions that do not satisfy the strong distribution assumption.

(i) Suppose ρ is a point mass on p∗. Then S
ρ
n is a (shifted and scaled) binomial distribution

and h
ρ
n has high total variation. In this situation a simple mechanism M can prevent

tracing: simply outputting q = p∗ will be accurate with high probability, but this allows
the output ofM to be (almost) independent from its input. Tracing is thus impossible, as
there is almost no difference between the IN and OUT cases.

(ii) Example (i) can be generalised: Any distribution supported on a short interval is not
strong.

(iii) Suppose ρ is supported on two points p∗ and p∗∗ that are far apart. Then S
ρ
n is a convex

combination of shifted and scaled binomial distributions.

This corresponds to a mechanismM that knows p∗ and p∗∗ and returns one of the two
if they are sufficiently accurate. Again, with high probability, the output of M is not
sensitive to changes in the input. That means the output ofM does not contain much
information that is specific to its input. This makes tracing impossible.

(iv) Example (iii) can be generalised to any distribution supported on a small number of points.
This can be generalised further to distributions supported on many short intervals.
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The above examples demonstrate what a strong distribution avoids. Instead a strong distribution
is “spread out” and “smooth.”

The function h
ρ
n in Definintion 5 is somewhat unintuitive. We can give an alternative

definition:

Lemma 14. Let U1, · · · ,Un+1 ∈ [−1,1] be independent uniformly random variables and let P ∼ ρ be
independent from U1,U2, · · · ,Un+1. Let U(1) ≥U(2) ≥ · · · ≥U(n) denote the random variables in sorted
order. Set U(0) = +1 and U(n+2) = −1. Then

P
p∼ρ,x1···n+1∼p

 ∑
i∈[n+1]

xi = 2k −n− 1

 = P
U0,··· ,Un,P

[
U(k) ≥ P > U(k+1)

]
for all k ∈ {0,1, · · · ,n+ 1}.

Thus the function h
ρ
n from Definition 5 can be defined as

h
ρ
n(t) =

(n+ 1 + t)(n+ 1− t)
2(n+ 1)

· P
U0,··· ,Un,P

[
U( t+n+1

2 ) ≥ P > U( t+n+3
2 )

]
.

Intuitively, U(0) ≤U(1) ≤ · · · ≤U(n+2) partition the interval [−1,1] into n+ 2 subintervals. Now h
ρ
n

captures the amount of probability mass from ρ falling into each of these subintervals. However,
the partitioning is itself random, so the probability mass at a particular point does not fall
into a single subintervale. However, U(k) ≈ n+2−2k

n+2 , so this random partitioning approximately
partitions the interval evenly.

Proof of Lemma 14. Let U1,U2, · · · ,Un+1 and P be sampled as in the lemma statement. Now
define random variables x1, · · · ,xn+1 ∈ {±1} by

xi = 1 ⇐⇒ Ui ≥ P .

If we view P as fixed, then P [xi = 1] = (P + 1)/2 and E [xi] = P for each i. Moreover, the

distribution of x1, · · · ,xn+1 is n + 1 independent conditioned on P . We claim that, for any
k ∈ {0,1, · · · ,n+ 1}., ∑

i∈[n+1]

xi = 2k −n− 1 ⇐⇒ U(k) ≤ P ≤U(k+1).

The lemma follows from this claim, as we have shown a coupling between the two probability
spaces under which the two events coincide.

To see the claim, note that
∑
i∈[n+1] xi = 2k−n−1 if and only if k of the xis are set to +1, which

happens if and only if there are k choices of i ∈ [n+ 1] with Ui ≥ P . In turn this is equivalent to
saying that the kth largest Ui is greater than or equal to P , but the (k + 1)th largest Ui is not —
i.e. U(k) ≥ P > U(k+1).

We can also characterise the limiting case (i.e. n→∞ rather than fixed n):

Proposition 15. Let ρ : [−1,1]→ R be a continuously differentiable probability density function.
Then ρ is a ξ-strong distribution if and only if∫ +1

−1

∣∣∣∣∣ d
dp

(1− p2)ρ(p)
∣∣∣∣∣dp ≤ ξ. (2)
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Proposition 15 shows that ρ being a strong probability density function is equivalent to
a bound on the total variation of (1 − p2)ρ(p). This function should be contrasted with h

ρ
n in

Definition 5. Indeed, Proposition 15 is simply the result of taking n→∞ in Definition 5.

Proof of Proposition 15. Lemma 6 provides an exact characterisation of (ξ,n)-strong distribu-
tions. Namely, ρ is (ξ,n)-strong if and only if∣∣∣∣∣∣∣∣ E

p∼ρ,x1···n∼p,z∼p

f (x)
∑
i∈[n]

(xi − z)


∣∣∣∣∣∣∣∣ ≤ ξ (3)

for all f : {±1}n→ [−1,1]. To show that ρ is ξ-strong we must show that (3) holds for all n and
all f .

Fix n and f : {±1}n→ [−1,1]. Define g : [−1,1]→ [−1,1] by

g(p) = E
x1···n∼p

[f (x)] .

By Lemma 16, for any p ∈ [−1,1],

E
x1···n∼p

f (x) ·
∑
i∈[n]

(xi − p)

 = g ′(p) · (1− p2).

Thus

E
p∼ρ,x1···n∼p,z∼p

f (x)
∑
i∈[n]

(xi − z)

 = E
p∼ρ

[
g ′(p)(1− p2)

]
=
∫ +1

−1
g ′(p)(1− p2)ρ(p)dp.

Now we apply integration by parts — that is, we integrate both sides of an application of the
differentiation product rule:

d
dp
g(p)(1− p2)ρ(p) =g ′(p)(1− p2)ρ(p) + g(p)

d
dp

(1− p2)ρ(p).∫ +1

−1

d
dp
g(p)(1−p2)ρ(p)dp =

∫ +1

−1
g ′(p)(1−p2)ρ(p)dp+

∫ +1

−1
g(p)

d
dp

(1−p2)ρ(p)dp.∫ +1

−1
g ′(p)(1− p2)ρ(p)dp =

(
g(1)(1− 12)ρ(1)− g(−1)(1− (−1)2)ρ(−1)

)
−
∫ +1

−1
g(p)

d
dp

(1− p2)ρ(p)dp.
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Finally, we can apply Hölder’s inequality:∣∣∣∣∣∣∣∣ E
p∼ρ,x1···n∼p,z∼p

f (x)
∑
i∈[n]

(xi − z)


∣∣∣∣∣∣∣∣ =

∣∣∣∣∣∣
∫ +1

−1
g ′(p)(1− p2)ρ(p)dp

∣∣∣∣∣∣
=

∣∣∣∣∣∣
∫ +1

−1
g(p)

d
dp

(1− p2)ρ(p)dp

∣∣∣∣∣∣
≤‖g‖∞ ·

∫ +1

−1

∣∣∣∣∣ d
dp

(1− p2)ρ(p)
∣∣∣∣∣dp

≤
∫ +1

−1

∣∣∣∣∣ d
dp

(1− p2)ρ(p)
∣∣∣∣∣dp.

This proves one side of the equivalence. The other side of the equivalence follows from the
tightness of Hölder’s inequality and the fact that, by choosing n large enough, we can make
g : [−1,1]→ [−1,1] arbitrarily close to the function that makes the inequality tight.

Now we give a technical lemma needed in the above proof. This result is similar to [SU14,
Lemma 2.11]. (It can be viewed as a rescaling of said lemma.)

Lemma 16. Let f : {±1}n→ R. Define g : [−1,1]→ R by

g(p) = E
x1···n∼p

[f (x)] .

Then

E
x1···n∼p

f (x) ·
∑
i∈[n]

(xi − p)

 = g ′(p) · (1− p2).

Proof. Since x2 = 1 for x ∈ {±1}, we have the identity

d
dp

1 + xp
2

=
x
2

=
1 + xp

2
x − p
1− p2

for all x ∈ {±1} and p ∈ (−1,1). By the product rule, we have

d
dp

∏
i∈[n]

1 + xip
2

=
∑
i∈[n]

(
d

dp
1 + xip

2

) ∏
k∈[n]\{i}

1 + xkp
2

=
∑
i∈[n]

xi − p
1− p2

∏
k∈[n]

1 + xkp
2

for all x ∈ {±1}n and p ∈ (−1,1). Sampling x ∼ p samples each x ∈ {±1} with probability 1+xp
2 .

Thus sampling x1···n ∼ p, samples each x ∈ {±1}n with probability
∏
i∈[n]

1+xip
2 .

Now we can write

g(p) = E
x1···n∼p

[f (x)] =
∑

x∈{±1}n
f (x)

∏
i∈[n]

1 + xip
2

.
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Using the above identities gives

g ′(p) =
∑

x∈{±1}n
f (x)

d
dp

∏
i∈[n]

1 + xip
2

=
∑

x∈{±1}n
f (x)

∑
i∈[n]

xi − p
1− p2

∏
k∈[n]

1 + xkp
2

= E
x1···n∼p

f (x)
∑
i∈[n]

xi − p
1− p2


Rearranging gives the result.

Using the differentiation product rule and the triangle inequality, we can show that∫ +1

−1

∣∣∣∣∣ d
dp

(1− p2)ρ(p)
∣∣∣∣∣dp =

∫ +1

−1

∣∣∣(1− p2)ρ′(p)− 2pρ(p)
∣∣∣dp

≤
∫ +1

−1
(1− p2)

∣∣∣ρ′(p)
∣∣∣dp+

∫ +1

−1

∣∣∣2pρ(p)
∣∣∣dp

≤
∫ +1

−1

∣∣∣ρ′(p)
∣∣∣dp+ 2.

Thus, rather than bounding the total variation of (1 − p2)ρ(p), it suffices to bound the total
variation of ρ.

A bound on the total variation of the probability density function is a very natural “smooth-
ness” condition. In particular, the uniform distribution, whose probability density function is
the constant 1

2 , has zero total variation. Thus Proposition 15 justifies our assertion that strong
distributions correspond to a smoothness condition.

Using Proposition 15 we can give some examples of strong distributions:

• The uniform distribution on [−1,1] is 1-strong.

• The uniform distribution on [a,b] is ξ-strong for

ξ =
2− a2 − b2 +

∫ b
a
|2x|dx

b − a
≤ 2
b − a

+ 2.

• The (scaled) Beta distribution, with ρ(p) ∝ (1 + p)u−1(1− p)v−1 (where u > 0 and v > 0 and
the support is [−1,1]), is (4uv/(u + v))-strong.

3 Tracing from Fewer Statistics

In the previous section we focused on tracing from very weak assumptions—weakly accurate
answers and only a single reference sample. The price of these weak assumptions is that we
(provably) need d = Ω(n2) and can only trace a single individual. In this section we show that if
the mechanism gives more accurate answers, then we can trace with smaller d, and can trace
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many individuals in the dataset. In exchange, we require a larger reference sample. More
precisely, we show that if the mechanism is α-accurate (for some α ≥ n−1/2), and we are given
roughly 1/α2 independent reference samples from the distribution, then we can trace when
the dataset has dimension only O(α2n2), and we can successfully trace Ω(1/α2) individuals in
the dataset. We summarise our results in the following informal theorem, which effectively
generalises Theorem 1 from the introduction.

Theorem 17 (Informal). For every δ > 0, n ∈ N, α ≥ 1/n1/2, d ≥O(α2n2 log(1/δ)),m ≥O(log(n)/α2),
and t ≤Ω(1/α2), there exists an attacker A∗ : {±1}d × [±1]d × ({±1}d)m+1→ {IN,OUT} the following
holds.

LetD be a product distribution on [−1,1]d such that each marginal satisfies a technical smoothness
condition (Definition 5). LetM : {±1}n×d → [−1,1]d be α-accurate. Let p ∼ D and x1, · · · ,xn, y,z0, z1, . . . , zm ∼
Pp. Let q ∼M(x1, · · · ,xn). Then

P [A∗(y,q, (z0, z1, . . . , zm)) = IN] ≤ δ,and

P [|{ i ∈ [n] | A∗(xi ,q, (z0, z1, . . . , zm)) = IN}| ≥ t] ≥ 1− δ.

The modified attack is described below. In the attack, y represents the targeted individual, q
is a vector of the mechanism’s answers, and z0, z1, . . . , zm represent m+ 1 independent reference
samples from the distribution. The first reference sample z0 is used exactly as before as
an unbiased estimate of p. The remaining m samples z1, . . . , zm will be averaged to form an
independent unbiased estimate of p with much lower variance. We will set m ≈ 1/α2 so that this
estimate is α-accurate.

1. Input: y,z0, z1, . . . , zm ∈ {±1}d , and q ∈ [±1]d .

2. Let z = z0 and w = (1/m)
∑m
i=1 zi .

3. Let η := 2α and let
⌊
q −w

⌉
η ∈ [−η,η]d be the entrywise truncation of q −w, to [−η,η]. (We

believe that this truncation is unnecessary, but it is needed for our analysis.)

4. Compute
〈y − z,

⌊
q −w

⌉
η〉 =

∑
j∈[d]

(yj − zj ) ·
⌊
qj −wj

⌉
η
.

5. If 〈y − z,
⌊
q −w

⌉
η〉 > τ := 4α

√
d log(1/δ), output IN; otherwise output OUT.

Figure 2: Attack with a Large Reference SampleA∗δ,α,d,m(y,q,~z)

3.1 Soundness

Proposition 18 (Soundness). Fix any q,z1, . . . , zm,p ∈ [−1,1]d . Suppose y,z0 ∼ Pp are independent
from each other and from q,z1, . . . , zm. Then

P
[
A∗δ,α,d,m(y,q,~z) = IN

]
≤ δ.

Proof. Since y and z0 are identically distributed, and q,z1, . . . , zm are fixed

E
[
〈y − z,

⌊
q −w

⌉
η〉

]
= 0
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(recall z = z0 and w = (1/m)
∑m
i=1 zi). Since y and z0 are independent samples from a product

distribution, we have that 〈y−z,
⌊
q −w

⌉
η〉 =

∑
i∈[d](y

j −zj ) ·
⌊
q −w

⌉j
η is the sum of 2d independent

random variables, each of which is bounded by η = 2α. Thus, by Hoeffding’s inequality,

P
[
〈y − z,

⌊
q −w

⌉
η〉 > τ

]
≤ e−τ

2/16dα2
≤ δ.

This completes the proof.

3.2 Correlation Analysis

We have the following proposition, analogous to Proposition 10 in Section 2.2.

Lemma 19. Let M : {±1}n×d → [−1,1]d be α-accurate, let η = 2α, and let the distribution D be
a product distribution where every marginal ρ is (ξ,n)-strong and satisfies E

p∼ρ

[
1− p2

]
≥ γ + αξ.

Consider the following experiment. Let p ∼ D, let x1, . . . ,xn, z0, z1, . . . , zm ∼ Pp, and q ∼M(x1, . . . ,xn).
Then for every j ∈ [d],

E

∑
i∈[n]

(xji − z
j )
⌊
q −w

⌉j
η

 ≥ γ − 4n · e−α
2m/2,

where z = z0 and w = (1/m)
∑m
i=1wi .

Moreover, this statement holds even when we condition on everything pertaining to columns
other than j. That is, the bound on the expectation holds when we condition on any value of
p−j , {x−ji }i=1,...,n, {z

−j
i }j=0,1,...,m, and q−j and the randomness is taken only over the remaining variables.

Proof. SinceM is α-accurate and the distribution is (ξ,n)-strong, by Proposition 10

E

∑
i∈[n]

(xji − z
j ) · (qj −wj )

 ≥ γ.
So it remains to show that

E

∑
i∈[n]

(xji − z
j )(qj −wj −

⌊
q −w

⌉j
η)

 ≤ 4ne−α
2m/2.

Since
∣∣∣∣∣∑i∈[n](x

j
i − z

j ) · (qj −wj −
⌊
qj −wj

⌉
η
)
∣∣∣∣∣ ≤ 4n and

∑
i∈[n](x

j
i − z

j )(qj −wj −
⌊
qj −wj

⌉
η
) = 0 when

|qj −wj | ≤ η, it suffices to show that P
[
|qj −wj | > η

]
≤ e−α2m/2. By accuracy, we have |qj − pj | ≤ α,

and by a Chernoff bound, we have P
[
|pj −wj | > α

]
≤ e−α2m/2. This completes the proof.

Proposition 20. Suppose the distribution D is a product distribution in which each marginal ρ
is (ξ,n)-strong and satisfies E

p∼ρ

[
1− p2

]
≥ γ + αξ. SupposeM : {±1}n×d → [−1,1]d is α-accurate.

Let d > O(α2n2 log(1/δ)/γ2) and m ≥ 2log(24n/γ)/α2. Let x1, . . . ,xn, z0, z1, . . . , zm ∼ Pp. Let q ∼
M(x1, . . . ,xn) Then

P

∑
i∈[n]

(
〈xi − z,

⌊
q −w

⌉
η〉

)
<
γd

2

 ≤ δ
(recall z = z0, w = (1/m)

∑m
i=1 zi , and η = 2α).
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The proof of Proposition 20 is analogous to that of Lemma 11 and is presented in Section
A.2.

Proposition 20 establishes a lower bound on the sum of the expected scores. Next we will
upper bound the 2-norm of the expected scores. Upper bounding the 2-norm will establish that
the scores are “spread out,” so there must be many (roughly 1/α2) expected scores that are large
(larger than the threshold τ).

Our analysis relies on the following technical lemma.

Lemma 21. Let X1, · · · ,Xn ∈ R be independent random variables such that E [Xi] = 0 and E
[
X2
i

]
≤ 1

for every i ∈ [n]. Let Y ∈ R be another (not necessarily independent) random variable. Then∑
i∈[n]

E [XiY ]2 ≤ E
[
Y 2

]
.

Proof. For i ∈ [n], let ci = E [XiY ]. Define h : Rn→ R by h(x) =
∑
i∈[n] cixi . Then

E
[
h(X)2

]
=

∑
i,j∈[n]

cicjE
[
XiXj

]
≤

∑
i∈[n]

c2
i

and
E [h(X)Y ] =

∑
i∈[n]

ciE [XiY ] =
∑
i∈[n]

c2
i .

Thus
0≤E

[
(h(X)−Y )2

]
=E

[
h(X)2

]
−2E [h(X)Y ]+E

[
Y 2

]
≤

∑
i∈[n]

c2
i −2

∑
i∈[n]

c2
i +E

[
Y 2

]
.

Rearranging gives ∑
i∈[n]

c2
i ≤ E

[
Y 2

]
,

as required.

Lemma 22. Fix p ∈ [−1,1]d and letM : {±1}n×d → [−1,1]d be any mechanism. Fix any w and let
x1, · · · ,xn, z0 ∼ Pp and q ∼M(x1, · · · ,xn). Then for every j ∈ [d],√√∑

i∈[n]

E
[
〈xji − zj ,

⌊
qj −wj

⌉
η
〉
]2
≤ η
√

2

(recall z = z0). Moreover, this statement holds even when we condition on everything pertaining to
columns other than j. That is, the bound holds when we condition the expectations on any value of
{x−ji }i=1,...,n, z

−j
0 , and q−j and the randomness is taken only over the remaining variables.

Proof. We apply Lemma 21 with Xi = xji − z
j and Y =

⌊
qj −wj

⌉
η
.

Once again, we would like to apply a concentration result to turn our bound on the sum
of the squares of the expected scores into a high confidence bound on the sum of the squares
of the scores themselves. Once again, this issue is complicated by a lack of independence.
Nonetheless, we prove a suitable concentration bound for the sum of the squares of the scores
in Proposition 46. Using this concentration bound we can prove the following.
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Proposition 23. Fix p ∈ [−1,1]d and let M : {±1}n×d → [−1,1]d be any mechaniam. Assume
d ≥ 64(n+

√
log(1/δ)). Let x1, · · · ,xn, z0, z1, · · · , zm ∼ Pp, and let q ∼M(x1, · · · ,xn). Then

P


√∑
i∈[n]

〈xi − z,
⌊
q −w

⌉
η〉

2 ≤ 2ηd

 ≥ 1− δ

(recall z0 = z and w = (1/m)
∑n
i=1 zi).

Proof. By applying the triangle inequality to Lemma 22, we have√∑
i∈[n]

E
[
〈xi − z,

⌊
q −w

⌉
η〉

]2
≤ dη

√
2.

By Theorem 46, for any λ > 0,

P


√∑
i∈[n]

〈xi − z,
⌊
q −w

⌉
η〉

2 > λ+ dη
√

2

 ≤ exp
(
nd
2
− λ2

16η2

)
.

The theorem follows by setting λ = 4η
√
nd
2 + log(1/δ) ≤ ηd

2 .

Combining Proposition 20 with Proposition 23, we can show that, with high probability,
the attack says IN for many target individuals xi . To do so, we need the following elementary
lemma.

Lemma 24. Let σ ∈ Rn satisfy
∑
i∈[n]σi ≥ A and

∑
i∈[n]σ

2
i ≤ B

2. Then∣∣∣∣∣{i ∈ [n] : σi >
A
2n

}∣∣∣∣∣ ≥ ( A
2B

)2
.

Proof. Let τ = A/2n and S = {i ∈ [n] : σi > τ}. Let σS ∈ R|S | denote the restriction of σ onto the
coordinates indexed by S. Then

A ≤
∑
i∈[n]

σi =
∑
i∈[n]\S

σi +
∑
i∈S

σi

≤(n− |S |)τ + ||σS ||1
≤nτ +

√
|S | · ||σS ||2

≤nτ +
√
|S | · ||σ ||2

≤nτ +
√
|S | ·B.

Rearranging gives

|S | ≥
(A−nτ

B

)2
=

( A
2B

)2
,

as required.
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Proposition 25 (Completeness with a Large Reference Sample). Suppose the distribution D
is a product distribution in which each marginal ρ is (ξ,n)-strong and satisfies E

p∼ρ

[
1− p2

]
≥

γ + αξ. SupposeM : {±1}n×d → [−1,1]d is α-accurate. Let d > O(α2n2 log(1/δ)/γ2) and m ≥
2log(24n/γ)/α2. Let x1, . . . ,xn, z0, z1, . . . , zn ∼ Pp. Let q ∼M(x1, . . . ,xn). Then

P
[∣∣∣∣{i ∈ [n] :A∗δ,α,d,m(xi ,q,~z) = IN

}∣∣∣∣ ≥ γ2

256α2

]
≥ 1− 2δ.

Proof. By Proposition 20, with probability at least 1− δ,∑
i∈[n]

(
〈xi − z,

⌊
q −w

⌉
η〉

)
≥
γd

2
=: A.

By Proposition 23, with probability at least 1− δ,√∑
i∈[n]

〈xi − z,
⌊
q −w

⌉
η〉

2 ≤ 2ηd =: B.

By a union bound, both of these events occur with probability at least 1− 2δ. Assuming they
both occur, Lemma 24 implies∣∣∣∣∣{i ∈ [n] : 〈xi − z,

⌊
q −w

⌉
η〉 ≥

A
2n

}∣∣∣∣∣ ≥ ( A
2B

)2
=

( γ

16α

)2
.

We have A/2n = γd/4n ≥ τ = 4α
√
d log(1/δ), which implies the result.

4 Extensions

4.1 Robustness: Mechanisms with `1-Bounded Error

We have takenM being accurate to mean
∣∣∣∣∣∣∣∣E [q]− p

∣∣∣∣∣∣∣∣
∞
≤ α for all p, where q =M(x) and the

expectation is taken over the randomness ofM and x. This condition is quite strong. Ideally, we

would only need to assume, say,
∣∣∣∣∣∣∣∣E [q]− p

∣∣∣∣∣∣∣∣
1
≤ αd – a very weak average-case error guarantee.

To achieve this, we must alter the definition of a strong distribution:

Definition 26 (Robustly Strong Distribution). A probability distribution ρ on [−1,1] is (η,γ)-
robustly strong if

E
p∼ρ

[
g ′(p)(1− p2) +

1
η
|g(p)− p|

]
≥ γ

for any polynomial g : [−1,1]→ [−1,1].

It can be verified that the uniform distribution is (1/2,1/3)-robustly strong.
Soundness holds as before, but Completeness can be strengthened to the following.

Proposition 27 (Robust Completeness). Suppose the distribution D is a product distribution
on [−1,1]d in which each marginal is (η,γ)-robustly strong. Assume d > O(n2 log(1/δ)/γ2). Let
M : {±1}n×d → [−1,1]d . Let p ∼ D, x1, · · ·xn, z ∼ Pp, and q =M(x1, · · · ,xn). Then

P
[
||q − p||1 > αd ∨ ∃i ∈ [n] Aδ,d(xi ,q,z) = IN

]
≥ 1− δ.
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Proposition 27 follows from the following analogs of Lemmas ?? and 11.

Lemma 28. Let f : {±1}n→ [−1,1]. Let ρ be a (η,γ)-robustly strong probability distribution. Then

E
p∼ρ,x1···n∼p,z∼p

f (x)
∑
i∈[n]

(xi − z) +
1
η
|f (x)− p|

 ≥ γ.
Proof. Define g : [−1,1]→ [−1,1] by g(p) = E

x1···n∼p
[f (x)]. By Lemma 16 ,

E
p∼ρ,x1···n∼p,z∼p

f (x)
∑
i∈[n]

(xi − z)

 = E
p∼ρ

[
g ′(p) · (1− p2)

]
.

By Convexity,
E

p∼ρ,x1···n∼p,z∼p
[|f (x)− p|] ≥ E

p∼ρ
[|g(p)− p|] .

The lemma now follows from Definition 26.

Lemma 29. Suppose the distribution D is a product distribution in which each marginal is (η,γ)-
robustly strong. Let M : {±1}n×d → [−1,1]d . Let p ∼ D, x1, · · ·xn, z ∼ Pp, and q =M(x1, · · · ,xn).
Assume d > O(n2 log(1/δ)/γ2). Then

P
p,x1···n,z,M

∑
i∈[n]

〈xi ,q〉 − 〈z,q〉+
1
η
||q − p||1 ≥

1
2
γd

 ≥ 1− δ.

The proof is deferred to the appendix.

4.2 Generalizations to Real-Valued Data

The results of the previous sections generalize nearly directly to Gaussian data with a fixed
variance. Specifically, suppose that the data X ∈ Rn×d is drawn independently with x

j
i ∼

N (µj ,σ
2
j ), where µj ,σj are themselves random variables distributed over [−1,1] and [0,σmax]

respectively according to a product distribution.
The attack is modified slightly in Figure 3.

A′δ,d,σmax
(y,q,z)

1. Input: y,z ∈ Rd and q ∈ [−1,1]d .

2. Compute 〈y,q〉 =
∑
j∈[d] y

j · qj and 〈z,q〉 =
∑
j∈[d] z

j · qj .

3. If 〈y,q〉 − 〈z,q〉 > τ ′ := 2σmax
√
d ln(1/δ), output IN; otherwise output OUT.

Figure 3: Our Privacy Attack for Real-Valued Data
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4.2.1 Soundness

Verifying soundness of our attack is again straightforward.

Proposition 30 (Soundness). Let q,µ ∈ [−1,1]d and σ ∈ [0,σmax]d . Suppose y,z ∼ N (µ,diag(σ )2)
are independent from each other and from q.3 Then

P
[
A′δ,d,σmax

(y,q,z) = IN
]
≤ δ.

Proof. We have that y − z ∼ N (0,2 · diag(σ )2). Thus 〈y,q〉 − 〈z,q〉 ∼ N (0,2
∑
j∈[d]σ

2
j q

2
j ). Since

2
∑
j∈[d]σ

2
j q

2
j ≤ 2dσ2

max, we have

P
[
〈y,q〉 − 〈z,q〉 > τ ′

]
≤ 1

2
exp

(
−τ ′2

2 · 2dσ2
max

)
≤ δ,

as required.

4.2.2 Proving Correlation

Now we can prove an analog to Lemma 16:

Lemma 31. Let f : Rn→ [−1,1] be a (measurable) function. Define g : R× (0,∞)→ R by

g(µ,σ ) = E
x∼N (µ~1n,σ2In)

[f (x)] .

Then

E
x∼N (µ~1n,σ2In)

f (x)
∑
i∈[n]

(xi −µ)

 = σ2
(
∂
∂µ
g(µ,σ )

)
.

In Lemma 16, we get E
x1···n∼p

[
f (x) ·

∑
i∈[n](xi − p)

]
= g ′(p) · (1 − p2). The variance of x ∼ p is

1− p2. Thus there is a very close connection between Lemmas 16 and 31.

Proof. We have

∂
∂µ
g(µ,σ ) =

∂
∂µ

E
x∼N (µ~1n,σ2In)

[f (x)]

=
∂
∂µ

∫
Rn
f (x)

(
1

√
2πσ2

)n
e
−1

2σ2
∑
i∈[n](xi−µ)2

dx

=
∫
Rn
f (x)

(
1

√
2πσ2

)n(
∂
∂µ
e
−1

2σ2
∑
i∈[n](xi−µ)2

)
dx

=
∫
Rn
f (x)

(
1

√
2πσ2

)n
e
−1

2σ2
∑
i∈[n](xi−µ)2 1

σ2

∑
i∈[n]

(xi −µ)dx

= E
x∼N (µ~1n,σ2In)

f (x)
1
σ2

∑
i∈[n]

(xi −µ)

 .
3x ∼N (µ,diag(σ )2) denotes that each xj is drawn independently from a Gaussian distribution with mean µj and

variance σ2
j .
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Rearranging gives the result.

The relevant notion of smoothness is now the following.

Definition 32. A distribution ρ on pairs (µ,σ ) ∈ [−1,1]× [0,σmax] is (α,γ)-strong for Gaussians if
for all continuously differentiable functions g : [−1,1]× [0,σmax]→ [−1,1] such that |g(µ,σ )−µ| ≤ α
for all µ ∈ [−1,1] and σ ∈ [0,σmax], we have

E
(µ,σ )∼ρ

[
σ2 ∂
∂µ
g(µ,σ )

]
≥ γ.

When σ is constant and µ is uniform on an interval [a,b], then this definition is satisfied
with γ = 1− 2α

b−a . Note that, unlike the boolean case, the mean and variance of a Normal are not
necessarily related. This means we can consider the simpler case where the variance is fixed
and only the mean varies.

The definition of accuracy remains effectively the same: A mechanismM : Rn×d → [−1,1]d is
α-accurate if

∀µ ∈ [−1,1]d ∀σ ∈ [0,σmax]d ∀j ∈ [d]

∣∣∣∣∣∣ E
x1···n∼N (µ,diag(σ )2)

[
M(x1, · · · ,xn)j

]
−µj

∣∣∣∣∣∣ ≤ α
and, moreover, this statement holds when we condition on the randomness in columns other
than j.

Proposition 33. Suppose the mechanismM : Rn×d → [−1,1]d is α-accurate. Suppose pairs (µ1,σ1), · · · , (µd ,σd) ∈
[−1,1]× [0,σmax] are independent random variables whose distributions are all (α,γ)-strong for Gaus-
sians. Let x1, · · ·xn, z ∼N (µ,diag(σ )2) be independent and q =M(x1, · · · ,xn). Then, for all j ∈ [d],

E

∑
i∈[n]

(xi − z)j qj
 ≥ γ

and this statement holds when we condition on the randomness in columns other than j. Moreover, if
M is symmetric, then

∀j ∈ [d] ∀i ∈ [n] E
[
(xi − z, )jqj

]
≥
γ

n
and this statement holds when we condition on the randomness in columns other than j.

Proof. This follows from Lemma 31 and Definition 32.

4.2.3 Completeness

Finally, having bounded the expected correlation, we can use concentration to obtain a high
probability bound.

Lemma 34. Let M : Rn×d → [−1,1]d be α-accurate. Assume d > O(n2σ2
max log(1/δ)/γ2). Sup-

pose pairs (µ1,σ1), · · · , (µd ,σd) ∈ [−1,1] × [0,σmax] are independent random variables drawn from
(α,γ)-strong distributions for Gaussians. Let x1, · · ·xn, z ∼ N (µ,diag(σ )2) be independent and
q =M(x1, · · · ,xn). Then

P

∑
i∈[n]

〈xi ,q〉 − 〈z,q〉 <
1
2
γd

 ≤ δ.
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Moreover, ifM is symmetric, then

∀i ∈ [n] P
[
〈xi ,q〉 − 〈z,q〉 <

γd

2n

]
≤ δ.

We defer the proof to the appendix, as it is unenlightening and long.

Proposition 35 (Completeness). Suppose pairs (µ1,σ1), · · · , (µd ,σd) ∈ [−1,1] × [0,σmax] are inde-
pendent random variables whose distributions are all (α,γ)-strong for Gaussians. Assume d >
O(n2σ2

max log(1/δ)/γ2). Suppose the mechanismM : Rn×d → [−1,1]d is α-accurate. Let x1, · · ·xn, z ∼
N (µ,diag(σ )2) and q =M(x1, · · · ,xn). Then

P
[
∃i ∈ [n] A′δ,d,σmax

(xi ,q,z) = IN
]
≥ 1− δ.

Moreover, ifM is symmetric, then

∀i ∈ [n] P
[
A′δ,d,σmax

(xi ,q,z) = IN
]
≥ 1− δ.

Proof. By Lemma 34,

P

∑
i∈[n]

〈xi ,q〉 − 〈z,q〉 <
1
2
γd

 ≤ δ.
By assumption, 1

2γd > nτ
′ = n ·2σmax

√
d ln(1/δ). Thus, with high probability 〈xi ,q〉 − 〈z,q〉 > τ ′

for some i ∈ [n], as required. The second half of the proposition is similar.

References

[BDMN05] Avrim Blum, Cynthia Dwork, Frank McSherry, and Kobbi Nissim. Practical privacy:
The SuLQ framework. In Symposium on Principles of Database Systems–PODS, pages
128–138, New York, NY, USA, 2005. ACM.

[BLR08] Avrim Blum, Katrina Ligett, and Aaron Roth. A learning theory approach to non-
interactive database privacy. In Proceedings of the Fortieth Annual ACM Symposium
on Theory of Computing, STOC ’08, pages 609–618, New York, NY, USA, 2008. ACM.

[BRS+09] Rosemary Braun, William Rowe, Carl Schaefer, Jinghui Zhang, and Kenneth Buetow.
Needles in the haystack: identifying individuals present in pooled genomic data.
PLoS genetics, 5(10):e1000668, 2009.

[BS98] Dan Boneh and James Shaw. Collusion-secure fingerprinting for digital data. IEEE
Transactions on Information Theory, 44(5):1897–1905, 1998.

[BUV14] Mark Bun, Jonathan Ullman, and Salil P. Vadhan. Fingerprinting codes and the
price of approximate differential privacy. In STOC, pages 1–10. ACM, May 31 –
June 3 2014.

[De12] Anindya De. Lower bounds in differential privacy. Theory of Cryptography, pages
321–338, 2012.

26



[DKM+06] Cynthia Dwork, Krishnaram Kenthapadi, Frank McSherry, Ilya Mironov, and Moni
Naor. Our data, ourselves: Privacy via distributed noise generation. In Advances in
Cryptology - EUROCRYPT, pages 486–503, St. Petersburg, Russia, 2006.

[DMNS06] Cynthia Dwork, Frank McSherry, Kobbi Nissim, and Adam Smith. Calibrating noise
to sensitivity in private data analysis. In TCC, pages 265–284. Springer, March 4-7
2006.

[DMT07] Cynthia Dwork, Frank McSherry, and Kunal Talwar. The price of privacy and the
limits of LP decoding. In Proceedings of the Thirty-ninth Annual ACM Symposium on
Theory of Computing, STOC ’07, pages 85–94, New York, NY, USA, 2007. ACM.

[DN03] Irit Dinur and Kobbi Nissim. Revealing information while preserving privacy. In
PODS, pages 202–210. ACM, June 9-12 2003.

[DNT14] Cynthia Dwork, Aleksandar Nikolov, and Kunal Talwar. Efficient algorithms for
privately releasing marginals via convex relaxations. In Symposium on Computational
Geometry–SoCG, 2014.

[DRV10] Cynthia Dwork, Guy N. Rothblum, and Salil Vadhan. Boosting and differential
privacy. In Proceedings of the 2010 IEEE 51st Annual Symposium on Foundations
of Computer Science, FOCS ’10, pages 51–60, Washington, DC, USA, 2010. IEEE
Computer Society.

[DY08] Cynthia Dwork and Sergey Yekhanin. New efficient attacks on statistical disclosure
control mechanisms. In CRYPTO, pages 469–480, 2008.

[EN14] Yaniv Erlich and Arvind Narayanan. Routes for breaching and protecting genetic
privacy. Nature Reviews Genetics, 15(6):409–421, 2014.

[FMN13] Nadia Fawaz, S. Muthukrishnan, and Aleksandar Nikolov. Nearly optimal private
convolution. In Algorithms - ESA 2013 - 21st Annual European Symposium, Sophia
Antipolis, France, September 2-4, 2013. Proceedings, 2013.

[HR10] Moritz Hardt and Guy Rothblum. A multiplicative weights mechanism for privacy-
preserving data analysis. In Proc. 51st Foundations of Computer Science (FOCS), pages
61–70. IEEE, 2010.

[HSR+08] Nils Homer, Szabolcs Szelinger, Margot Redman, David Duggan, Waibhav Tembe,
Jill Muehling, John V Pearson, Dietrich A Stephan, Stanley F Nelson, and David W
Craig. Resolving individuals contributing trace amounts of dna to highly com-
plex mixtures using high-density snp genotyping microarrays. PLoS genetics,
4(8):e1000167, 2008.

[HT10] Moritz Hardt and Kunal Talwar. On the geometry of differential privacy. In Sym-
posium on Theory of Computing – STOC, pages 705–714, Cambridge, MA, June
2010.

[HU14] Moritz Hardt and Jonathan Ullman. Preventing false discovery in interactive data
analysis is hard. In FOCS. IEEE, October 19-21 2014.

27



[IGNC12] Hae Kyung Im, Eric R Gamazon, Dan L Nicolae, and Nancy J Cox. On sharing
quantitative trait gwas results in an era of multiple-omics data and the limits of
genomic privacy. The American Journal of Human Genetics, 90(4):591–598, 2012.

[JYW+09] Kevin B Jacobs, Meredith Yeager, Sholom Wacholder, David Craig, Peter Kraft,
David J Hunter, Justin Paschal, Teri A Manolio, Margaret Tucker, Robert N Hoover, ,
Gilles D Thomas, Stephen J Chanock, and Nilanjan Chaterjee. A new statistic and
its power to infer membership in a genome-wide association study using genotype
frequencies. Nature genetics, 41(11):1253–1257, 2009.

[KRS13] Shiva Prasad Kasiviswanathan, Mark Rudelson, and Adam Smith. The power of
linear reconstruction attacks. In ACM-SIAM Symposium on Discrete Algorithms
(SODA), 2013.

[KRSU10] Shiva Prasad Kasiviswanathan, Mark Rudelson, Adam Smith, and Jonathan Ullman.
The price of privately releasing contingency tables and the spectra of random
matrices with correlated rows. In STOC, pages 775–784, 2010.

[MN12] S. Muthukrishnan and Aleksandar Nikolov. Optimal private halfspace counting via
discrepancy. In Proceedings of the 44th Symposium on Theory of Computing Conference,
STOC 2012, New York, NY, USA, May 19 - 22, 2012, pages 1285–1292, 2012.

[NTZ13] Aleksandar Nikolov, Kunal Talwar, and Li Zhang. The geometry of differential
privacy: the sparse and approximate cases. STOC, 2013.

[RR10] Aaron Roth and Tim Roughgarden. Interactive privacy via the median mechanism.
In Proc. 42nd Symposium on Theory of Computing (STOC), pages 765–774. ACM,
2010.

[SOJH09] Sriram Sankararaman, Guillaume Obozinski, Michael I Jordan, and Eran Halperin.
Genomic privacy and limits of individual detection in a pool. Nature genetics,
41(9):965–967, 2009.

[SU14] Thomas Steinke and Jonathan Ullman. Interactive fingerprinting codes and the
hardness of preventing false discovery. In COLT, 2014.

[SU17] Thomas Steinke and Jonathan Ullman. Between pure and approximate differential
privacy. Journal of Privacy and Confidentiality, 2017.
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A Concentration Bounds

The following concentration result implies the concentration results we use in the earlier
sections.

Theorem 36. Let X ∈ Rn×d be a random matrix such that the columns are independent—that is,
X1,X2, · · · ,Xd ∈ Rn are independent random variables. Let Y ∈ Rd be a random variable that possibly
depends on X. Suppose that E

X

[
etXi,j

]
≤ ect2 for all t ∈ R, i ∈ [n], and j ∈ [d]. Assume ||Y ||∞ ≤ α with

certainty. Let a ∈ Rn. Define

Zj = (aTX)jYj ∈ R and Z =
∑
j∈[d]

Zj = aTXY ∈ R.

Suppose E
[
Zj | Zj+1 = zj+1, · · · ,Zd = zd

]
≥ γj for all j ∈ [d] and z ∈ Rd . Let γ =

∑
j∈[d]γj . Then

P
Z

[Z < γ −λ] ≤ exp
(

−λ2

16cdα2 ||a||21

)
for all λ > 0.

In Lemma 11, Xi,j = xji − z
j , Y = q =M(x). The vector a specifies which subset of scores we

are interested in (either a = ~1n for the sum of all scores or a = ei for a single score).
Note that if X has bounded entries, it satisfies the condition of Theorem 36:

Lemma 37 (Hoeffding’s Lemma). Let X ∈ [a,b] be a random variable. Then

E
[
e
t(X−E[X])

]
≤ et

2(b−a)2/8

for all t ∈ R.

Likewise, if X has Gaussian entries, we can apply Theorem 36:

Lemma 38. Let g be a standard Gaussian. Then, for all t ∈ R, E
g

[
etg

]
= et

2/2 and, if 0 ≤ t < 1/2,

E
g

[
etg

2]
= 1/
√

1− 2t.

To prove Theorem 36 we need the following lemmas.

Lemma 39 (Hölder’s Inequality). Let X1, · · · ,Xn ∈ R be (possibly dependent) random variables. Let
α∗,α1, · · · ,αn ∈ [1,∞] with 1/α∗ =

∑
i∈[n] 1/αi . Then

E
X

[
eα∗

∑
i∈[n]Xi

]1/α∗ ≤∏
i∈[n]

E
Xi

[
eαiXi

]1/αi
.
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Lemma 40. Let X,Y ∈ R be (possibly dependent) random variables. Suppose |Y | ≤ 1. Then

E
X,Y

[
e
XY− E

X,Y
[XY ]

]
≤ E
X,ξ

[
e2ξX

]
,

where ξ ∈ {±1} is uniform and independent of X and Y .

Proof. By Lemma ??,

E
X,Y

[
e
XY− E

X,Y
[XY ]

]
≤ E
X,Y ,ξ

[
e2ξXY

]
= E
X,Y ,ξ

[
e2ξX |Y |

]
.

Define ζ ∈ {0,1} to be a “randomised rounding” of |Y |, namely E
ζ

[ζ | Y ] = |Y |. By Jensen’s

inequality,

E
X,Y

[
e
XY− E

X,Y
[XY ]

]
≤ E
X,Y ,ξ

[
e2ξX |Y |

]
= E
X,Y ,ξ

[
e
E
ζ

[2ξXζ]]
≤ E
X,Y ,ξ,ζ

[
e2ξXζ

]
.

By Jensen’s inequality e0 = e
E
ξ

[2ξX]
≤ E
ξ

[
e2ξX

]
. Thus

E
X,Y

[
e
XY− E

X,Y
[XY ]

]
≤ E
X,Y ,ξ,ζ

[
e2ξXζ

]
= E
X,Y

[
P
ζ

[ζ = 0]e0 +P
ζ

[ζ = 1]E
ξ

[
e2ξX

]]
≤ E
X,Y

[
E
ξ

[
e2ξX

]]
= E
X,ξ

[
e2ξX

]
,

as required.

Lemma 41. Let X ∈ Rn be a random variable. Suppose E
[
etXi

]
≤ ect2 for all t ∈ R and i ∈ [n]. Let

Y ∈ [−α,α] be a random variable that possibly depends on X . Let a ∈ Rn. Define

Z = aTXY ∈ R.

Then
E
[
e
t(Z−E[Z])

]
≤ e4cα2t2||a||21

for all t ∈ R.

Proof. We may assume, without loss of generality, that ||a||1 = 1 and α = 1. By assumption,
E
[
etaiXi

]
≤ ect2a2

i for all i ∈ [n] and t ∈ R. Now we apply Lemma 39 with αi = 1/ |ai | ∈ [1,∞] and
α∗ = 1:

E
[
eta

TX
]

= E
[
eα∗ta

TX
]1/α∗ ≤∏

i∈[n]

E
[
eαitaiXi

]1/αi ≤∏
i∈[n]

ecαit
2a2
i = ect

2||a||1 = ect
2

for all t ∈ R. By Lemma 40,

E
Z

[
e
t(Z−E[Z])

]
= E
X,Y

[
e
taTXY− E

X,Y
[taTXY ]

]
≤ E
X,ξ

[
e2ξtaTX

]
≤ e4ct2

for all t ∈ R, as required.
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Lemma 42. Let X ∈ Rn×d be a random variable such that the columns are independent. Suppose that
E
[
etXi,j

]
≤ ect2 for all t ∈ R, i ∈ [n], and j ∈ [d]. Let Y ∈ [−α,α]d be a random variable that possibly

depends on X. Let a ∈ Rn. For j ∈ [d], define

Zj = (aTX)jYj ∈ R and µj(z) = E
[
Zj | Zj+1 = zj+1, · · · ,Zd = zd

]
.

Let Z =
∑
j∈[d]Zj = aTXY and µ(z) =

∑
j∈[d]µj(z). Then

E
[
et(Z−µ(Z))

]
≤ e4cdα2t2||a||21

for all t ∈ R.

Proof. Firstly, by Lemma 41,

E
[
et(Zj−µj (z)) | Zj+1 = zj+1, · · · ,Zd = zd

]
= E

[
e
t(Zj−E[Zj |Zj+1=zj+1,··· ,Zd=zd]) | Zj+1 = zj+1, · · · ,Zd = zd

]
≤ e4cα2t2||a||21

for all t ∈ R, j ∈ [d], and z ∈ Rd .
Now we prove by induction on k ∈ [d] that

E
[
et

∑
j∈[k]Zj−µj (Z) | Zk+1 = zk+1, · · · ,Zd = zd

]
≤ e4ckα2t2||a||21

for all t ∈ R and z ∈ Rd , from which the lemma follows by setting k = d.
The base case k = 1 is immediate from Lemma 41. Finally, the induction step:

E
[
et

∑
j∈[k]Zj−µj (Z) | Zk+1 = zk+1, · · · ,Zd = zd

]
=

∑
z∗k

P
[
Zk = z∗k

]
E
[
et

∑
j∈[k−1]Zj−µj (Z) ·et(Zk−µk(Z)) |Zk = z∗k ,Zk+1 = zk+1,· · ·,Zd = zd

]
=

∑
z∗k

P
[
Zk = z∗k

]
·et(z

∗
k−µk(z)) ·E

[
et

∑
j∈[k−1]Zj−µj (Z) |Zk = z∗k ,Zk+1 = zk+1,· · ·,Zd = zd

]
≤

∑
z∗k

P
[
Zk = z∗k

]
· et(z

∗
k−µk(z)) · e4c(k−1)α2t2||a||21

= E
[
et(Zk−µk(z)) | Zk+1 = zk+1, · · · ,Zd = zd

]
· e4c(k−1)α2t2||a||21

≤ e4ct2||a||21 · e4c(k−1)t2||a||21 ,

as required.

Proof of Theorem 36. The assumption that E
[
Zj | Zj+1 = zj+1, · · · ,Zd = zd

]
≥ γj for all j ∈ [d] and

z ∈ Rd . Implies µj(Z) ≥ γj with certainty. Thus it remains to show that Z is close to µ(Z).
By Markov’s inequality and Lemma 42,

P [Z −µ(Z) > λ] ≤
E
[
et(Z−µ(Z))

]
etλ

≤ e
4cdα2t2||a||21

etλ
.
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Setting t = λ
8cdα2||a||21

gives

P [Z −µ(Z) > λ] ≤ e−tλ/2 = e
−λ2

16cdα2 ||a||21 ,

as desired.

A.1 Concentration of 2-Norm

Lemma 43. Let X ∈ Rn be a product distribution. Suppose E
[
etXi

]
≤ ect2 for all t ∈ R and i ∈ [n]. Let

Y ∈ [−α,α] be a random variable that possibly depends on X. Let a ∈ Rn. Define

Z = aTXY ∈ R.

Then
E
[
e
t(Z−E[Z])

]
≤ e4cα2t2||a||22

for all t ∈ R.

Proof. We may assume, without loss of generality, that α = 1. By assumption, E
[
etaiXi

]
≤ ect2a2

i

for all i ∈ [n] and t ∈ R. By independence,

E
[
eta

TX
]

=
∏
i∈[n]

E
[
etaiXi

]
≤

∏
i∈[n]

ect
2a2
i = ect

2||a||22

for all t ∈ R. By Lemma 40,

E
Z

[
e
t(Z−E[Z])

]
= E
X

[
e
taTXY−E

X
[taTXY ]] ≤ E

X,ξ

[
e2ξtaTX

]
≤ e4ct2||a||22

for all t ∈ R, as required.

Lemma 44. Let X ∈ Rn be a product distribution. Suppose E
[
etXi

]
≤ ect2 for all t ∈ R and i ∈ [n]. Let

Y ∈ [−α,α] be a random variable that possibly depends on X. Define

~V = XY ∈ Rn.

Then

E
e t22 ∣∣∣∣∣∣∣∣~V−E[

~V
]∣∣∣∣∣∣∣∣2

2

 ≤ e8ncα2t2

for all t ∈ [−1/4
√
cα,1/4

√
cα].

Proof. Let g ∈ Rn be a standard multivariate Gaussian and

Z = gT (V −E [V ]) ∈ R.

By Lemma 38,

E
g

[
etZ

]
=

∏
i∈[n]

E
gi

[
e
t(Vi−E[Vi ])gi

]
=

∏
i∈[n]

e
t2(~Vi−E

[
~Vi
]
)2/2

= e
t2
∣∣∣∣∣∣∣∣~V−E[

~V
]∣∣∣∣∣∣∣∣2

2
/2
.
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By Lemmas 43 and 38,

E
g,V

[
etZ

]
≤ E
g

[
e4cα2t2||g ||22

]
=

∏
i∈[n]

E
g

[
e4cα2t2g2

i

]
=

(
1

√
1− 2 · 4cα2t2

)n
,

assuming 0 ≤ 4cα2t2 < 1/2. Thus

E
V

et2∣∣∣∣∣∣∣∣V−E[V ]
∣∣∣∣∣∣∣∣2

2
/2
 ≤ (

1
√

1− 8cα2t2

)n
≤ e8ncα2t2 ,

as 1/
√

1− x ≤ ex for 0 ≤ x ≤ 1/2.

Lemma 45. Let X ∈ Rn×d be a product distribution. Suppose E
[
etXi,j

]
≤ ect2 for all t ∈ R, i ∈ [n], and

j ∈ [d]. Let Y ∈ [−α,α]d be a random variable that possibly depends on X. For j ∈ [d], define

~V j = XjY j ∈ Rn and µj(~v1, · · · , ~vd) = E
[
~V j | ~V j+1 = ~vj+1, · · · , ~V d = ~vd

]
.

Let ~V =
∑
j∈[d]

~V j and µ(~v1, · · · , ~vd) =
∑
j∈[d]µ

j(~v1, · · · , ~vd). Then

E
[
e
t2
2

∣∣∣∣∣∣∣∣~V−µ(~V 1,··· , ~V d )
∣∣∣∣∣∣∣∣2

2

]
≤ e8ndcα2t2

for all t ∈ [−1/4
√
cα,1/4

√
cα].

The proof is analogous to that of Lemma 42.

Theorem 46. Let X ∈ Rn×d be a random matrix with independent entries. Suppose E
[
etXi,j

]
≤ ect2

for all t ∈ R, i ∈ [n], and j ∈ [d]. Let Y ∈ [−α,α]d be a random variable that possibly depends on X.
For j ∈ [d], define

~V j = XjY j ∈ Rn.

Suppose that, for all j ∈ [d] and ~v1, · · · , ~vd ∈ Rn,∣∣∣∣∣∣∣∣E [
~V j | ~V 1 = ~v1, · · · , ~V j−1~vj−1, ~V j+1~vj+1, · · · , ~V d~vd

]∣∣∣∣∣∣∣∣
2
≤ βj .

Let ~V =
∑
j∈[d]

~V j . Then

P

∣∣∣∣∣∣∣∣~V ∣∣∣∣∣∣∣∣
2
> λ+

∑
j∈[d]

βj

 ≤ e nd2 − λ2

32cα2

for all λ > 0.

Proof. Let
µj(~v1, · · · , ~vd) = E

[
~V j | ~V j+1 = ~vj+1, · · · , ~V d = ~vd

]
for j ∈ [d] and

µ(~v1, · · · , ~vd) =
∑
j∈[d]

µj(~v1, · · · , ~vd).
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By assumption
∣∣∣∣∣∣µj(~v1, · · · , ~vd)

∣∣∣∣∣∣
2
≤ βj for all j ∈ [d]. Thus

∣∣∣∣∣∣µ(~v1, · · · , ~vd)
∣∣∣∣∣∣

2
≤

∑
j∈[d]βj by the

triangle inequality. By Lemma 45, E
[
e
t2
2

∣∣∣∣∣∣∣∣~V−µ(~V 1,··· , ~V d )
∣∣∣∣∣∣∣∣2

2

]
≤ e8ndcα2t2 for all t ∈ [−1/4

√
cα,1/4

√
cα].

Thus, by Markov’s inequality,

P
[∣∣∣∣∣∣∣∣~V −µ(~V 1, · · · , ~V d)

∣∣∣∣∣∣∣∣
2
≥ λ

]
≤

E
[
e
t2
2

∣∣∣∣∣∣∣∣~V−µ(~V 1,··· , ~V d )
∣∣∣∣∣∣∣∣2

2

]
e
t2
2 λ

2
≤ e(8ndcα2−λ2/2)t2 .

Setting t = 1/4
√
cα gives the result.

A.2 Proofs of Concentration Lemmas

Now we prove the various concentration lemmas we need.

Lemma 47 (Restating Lemma 11). Suppose the distributionD is a product distribution in which each
marginal ρ is (ξ,n)-strong and satisfies E

p∼ρ

[
1− p2

]
≥ γ+α ·ξ. Suppose the mechanismM : {±1}n×d →

[−1,1]d is α-accurate. Assume d > O(n2 log(1/δ)/γ2). Let x1, · · ·xn, z ∼ Pp and q ∼ M(x1, · · · ,xn).
Then

P
p,x1···n,z,M

∑
i∈[n]

(〈xi ,q〉 − 〈z,q〉) <
γ

2d

 ≤ δ.
Moreover, ifM is symmetric, then

∀i ∈ [n] P
p,x1···n,z,M

[
〈xi ,q〉 − 〈z,q〉 <

γd

2n

]
≤ δ.

Proof of Lemma 11. Let a = ~1 ∈ Rn, Xi,j = xji − z
j , and Y = q =M(x). Now we have∑

i∈[n]

(〈xi ,q〉 − 〈z,q〉) = Z = aTXY .

Lemma 37 implies E
[
etXi,j

]
≤ et2/2 for all i, j, and t. Let Zj = aTXjY j =

∑
i∈[n](x

j
i − z

j )qj . Proposi-

tion 10 shows that

E
[
Zj | Zj+1 = zj+1, · · · ,Zd = zd

]
= E
pj ,x

j
1,··· ,x

j
n,zj

∑
i∈[n]

(
〈xji ,q

j〉 − 〈zj ,qj〉
) ≥ γ

for all j ∈ [d] and z ∈ Rd . Thus Theorem 36 shows that

P
Z

[Z < γd −λ] ≤ exp
(
−λ2

16cd ||a||21

)
for all λ > 0, where c = 1/2. In particular, setting λ = γd/2 gives

P
Z

[Z < γd/2] ≤ exp
(
−(γd/2)2

8dn2

)
= exp

(
−γ2d

32n2

)
≤ δ.

To prove the second part of the lemma, we set a = ~ei instead.

34



Proposition 48 (Restating Proposition 20). Suppose the distribution D is a product distribu-
tion in which each marginal ρ is (ξ,n)-strong and satisfies E

p∼ρ

[
1− p2

]
≥ γ + αξ. Suppose M :

{±1}n×d → [−1,1]d is α-accurate. Let d > O(α2n2 log(1/δ)/γ2) and m ≥ 2log(24n/γ)/α2. Let
x1, . . . ,xn, z0, z1, . . . , zm ∼ Pp. Let q ∼M(x1, . . . ,xn) Then

P

∑
i∈[n]

(
〈xi − z,

⌊
q −w

⌉
η〉

)
<
γd

2

 ≤ δ
(recall z = z0, w = (1/m)

∑m
i=1 zi , and η = 2α).

Proof of Proposition 20. Let a = ~1, Xi,j = (xji − z
j), Yj =

⌊
q −w

⌉j
η , and Zj = (aTX)jYj =

∑
i∈[n](x

j
i −

zj )
⌊
q −w

⌉j
η . By Lemma 19, the hypotheses of Theorem 36 are satisfied. Thus we have

P
[
aTXY < d

(
γ − 4ne−α

2m/2
)
−λ

]
≤ e

−λ2

8dη2n2

for all λ > 0. Set λ =
√

8dη2n2 log(1/δ) ≤ γd/6. Now 4ne−α
2m/2 ≤ γ/6, so the result follows.

Lemma 49 (Restating Lemma 29). Suppose the distribution D is a product distribution in which
each marginal is (η,γ)-robustly strong. LetM : {±1}n×d → [−1,1]d . Let p ∼ D, x1, · · ·xn, z ∼ Pp, and
q =M(x1, · · · ,xn). Assume d > O(n2 log(1/δ)/??). Then

P
p,x1···n,z,M

∑
i∈[n]

〈xi ,q〉 − 〈z,q〉+
1
η
||q − p||1 ≥

1
2
γd

 ≥ 1− δ.

Proof.

Lemma 50 (Restating Lemma 34). LetM : Rn×d → [−1,1]d be α-accurate. Assume d > O(n2σ2
max log(1/δ)/γ2).

Suppose pairs (µ1,σ1), · · · , (µd ,σd) ∈ [−1,1] × [0,σmax] are independent random variables drawn
from (α,γ)-strong distributions for Gaussians. Let x1, · · ·xn, z ∼N (µ,diag(σ )2) be independent and
q =M(x1, · · · ,xn). Then

P

∑
i∈[n]

〈xi ,q〉 − 〈z,q〉 <
1
2
γd

 ≤ δ.
Moreover, ifM is symmetric, then

∀i ∈ [n] P
[
〈xi ,q〉 − 〈z,q〉 <

γd

2n

]
≤ δ.

Proof. As in the proof of Lemma 11, let a = ~1 ∈ Rn, Xi,j = x
j
i − µ

j , and Y = q =M(x). Now we
have ∑

i∈[n]

(〈xi ,q〉 − 〈z,q〉) = Z = aTXY .

Lemma 38 implies E
[
etXi,j

]
≤ eσ2

maxt
2/2 for all i, j, and t. Let Zj = aTXjY j =

∑
i∈[n](x

j
i − z

j)qj .

Proposition 33 shows that

E
[
Zj | Zj+1 = zj+1, · · · ,Zd = zd

]
= E
pj ,x

j
1,··· ,x

j
n,zj

∑
i∈[n]

(
〈xji ,q

j〉 − 〈zj ,qj〉
) ≥ γ
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for all j ∈ [d] and z ∈ Rd . Thus Theorem 36 shows that

P
Z

[Z < γd −λ] ≤ exp
(
−λ2

16cd ||a||21

)
for all λ > 0, where c = σ2

max/2. In particular, setting λ = γd/2 gives

P
Z

[Z < γd/2] ≤ exp
(
−(γd/2)2

8σ2
maxdn2

)
= exp

(
−γ2d

32σ2
maxn2

)
≤ δ.

To prove the second part of the lemma, we set a = ~ei instead.
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Figure 4: Graphical model depiction of the two scenarios distinguished by previous work
[HSR+08, JYW+09, SOJH09]. A box with an integer k in the corner indicates k i.i.d. copies of
the contents. Size 2n is representative of the typical size for the reference sample; [SOJH09]
consider the effect of different reference sample sizes. Note that the mechanism is restricted to
outputting the true sample mean x̄.

This Work
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Figure 5: Graphical model depiction of the two scenarios distinguished by our algorithm. Yellow
regions indicate changes relative to previous work. µ denotes the density of the distribution
on the parameters p. Y denotes a single reference sample from the underlying population. q
denotes the output ofM(x1, ...,xn), which we assume is within `1 distance αd (or in somes cases
`∞ distance α of the true mean x̄ ∈ [−1,1]d .
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