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1 Introduction
As more and more data is being collected and used, privacy and statistical validity are becoming
increasingly vexing issues for scientists, policymakers, and industry. Sound tools are needed, as “ad
hoc” approaches have been prone to failure. My research focuses on providing rigorous techniques
for privacy-preserving data analysis and statistically valid adaptive data analysis. These problems
turn out to be intimately related and both are addressed by differential privacy.

I find working in these areas particularly compelling because they offer an exciting opportunity
to put theory into practice. Google and Apple are already protecting user data with differential
privacy and I believe that my research will help this technology mature and spread. Furthermore,
differential privacy draws in a broad spectrum of researchers and ideas – from cryptography, learning
theory, and information theory to statistics and law – and I enjoy the interdisciplinary nature of
the field.

My work studies two sides of these problems: Firstly, I develop improved algorithms and analyt-
ical tools for private or adaptive data analysis. Secondly, I study the limitations of what is possible
– this includes proving impossibility results that help guide the development of algorithms, and also
includes developing “privacy attacks.” Privacy attacks are an important part of motivating privacy
research, as they highlight the very real dangers inherent when working with private data.

I also work in pseudorandomness, specifically constructing unconditional pseudorandom gener-
ators. Pseudorandom generators are powerful and ubiquitous tools; in computational complexity
theory, they are used for derandomization – that is, converting efficient randomized algorithms into
similarly-efficient deterministic algorithms. I am particularly interested in derandomizing compu-
tations that use very little space. My goal is to develop new techniques in this area. Specifically,
my research focuses on the use of discrete Fourier analysis, which is a very powerful technique, but
which had seen limited application to the small-space setting prior to my work.

2 Differential Privacy
More sensitive data is being collected about individuals than ever before. This data can be a gold-
mine for science – from medical research to machine learning. However, an increasingly important
challenge is to balance the value of sharing or releasing information about this data with the risk
of compromising the privacy of the individuals concerned.

Traditional “de-identification” techniques – in which the data is partially redacted in an effort
to mask the identities of individuals – have suffered numerous high-profile failures. For example,
researchers have “re-identified” information about individuals by cross-referencing supposedly de-
identified data with other public datasets, such as voter registration records [Swe97] or online movie
reviews [NS08], or by simply piecing together clues in the released data [BZ06]. Even aggregate
statistics [HSR+08] and learned models [CKN+11] can expose an individual’s private information.
These cases have resulted in lawsuits, job losses, and policy changes. This checkered record high-
lights the need for a more rigorous approach to privacy-preserving data analysis, which led to the
development of differential privacy.
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My goal is to help develop principled approaches to data privacy and enable their real-world
use. My research also delineates the limitations of what can be done privately by studying “privacy
attacks.” These demonstrate how information that may seem innocuous can compromise privacy.

Privacy attacks. Privacy is inherently a hard problem. Releasing too much information about
a dataset will inevitably imperil privacy. The question is to pinpoint how much is too much. This
helps set expectations for what can be achieved privately and demonstrates the need for rigorous
privacy technologies like differential privacy. My work provides simple and general privacy attacks
and also shows a sharp characterization of what is possible.

Re-identifications of de-identified data have demonstrated the infeasibility of privately releasing
individual-level microdata. However, privacy attacks are possible even if only aggregate information
is released. Early work in this area [DN03, et sequalae] showed that approximately releasing a rich
set of statistics about a dataset can allow the dataset to be partially reconstructed. Later work has
shown that even the simplest possible statistics can “leak” private information.

A key example is genome-wide association study (GWAS) data, in which the DNA of a “case
group” of people is analyzed. The data is aggregated by simply publishing, for each genetic attribute
(i.e. SNP), what fraction of people in the case group have that attribute; there may be millions of
attributes, but only a few hundred individuals in the case group. Homer et al. [HSR+08] gave the
first practical demonstration that even this limited information can identify members of the case
group, which led to changes in how research data is shared. My work shows that this is unavoidable.

With collaborators, I showed [DSS+15] that, if there are sufficiently many attributes, then
even approximately releasing attribute frequencies makes it possible to identify members of the
case group. We showed that, under reasonable assumptions, we can determine membership of the
case group by simply looking at the correlation (i.e. inner product) between a person’s attributes
and the approximate case group statistics; to analyze this we unified the statistical approaches
[HSR+08, SOJH09] with the cryptography literature on “fingerprinting” [BS98, Tar08, BUV14].
This privacy attack is both simpler than previous work and more universal – no accurate algorithm
can circumvent it. Our privacy attack becomes feasible at the same point where differentially private
algorithms begin to break down, which shows that differential privacy provides the best possible
accuracy. Our survey [DSSU17] discusses this and other privacy attacks. Recently, I have been
extending these attacks to settings where the data or the released statistics are “sparse” [SU17b].

Refining differential privacy. Differential privacy is a formal standard for privacy-preserving
data analysis, which provides a basis for developing such algorithms. A key theme in my research
is understanding foundational questions in differential privacy, with the aim of improving the ana-
lytical tools underlying all differentially private algorithms and deepening connections to areas like
information theory and statistical inference.

Intuitively, differential privacy requires that anything that can be “learned” about an individual
from the output of the algorithm could also be learned if their data is not part of the algorithm’s
input. Formally, a frequentist (rather than Bayesian) definition is used. Namely, the algorithm’s
output distribution should not depend too much on any individual’s data:

Definition 1 ([DMNS06, DKM+06]). A randomized algorithm M satisfies (ε, δ)-differential privacy
if, for any pair of inputs x and x′ differing only by the addition, removal, or replacement of a single
individual’s data,

P [M(x) ∈ E] ≤ eεP
[
M(x′) ∈ E

]
+ δ (1)

for all possible events E over the output of M .

The literature on differential privacy has flourished in the decade since its inception and it has
been broadly accepted as an effective privacy standard. Google has recently deployed differentially
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private data collection in the Chrome browser [EPK14], Apple (since iOS 10) is now collecting
user information in a differentially private manner [App], and the United States Census Bureau is
developing differentially private tools for deployment with the 2020 census.

This definition is surprisingly versatile. However, the hybrid multiplicative-additive bound (1)
can be mathematically inelegant and often does not allow a tight analysis of the privacy properties
of algorithms. Given the central importance of Definition 1, I believe that it is vital practically and
theoretically to identify the best way to quantify privacy.

Bun and I [BS16] (building on [DR16]) gave a cleaner information-theoretic definition, which
replaces the multiplicative-additive bound (1) with a bound in terms of Rényi divergence. Our
approach – dubbed concentrated differential privacy – yields tighter quantitative results that achieve
a sharper and more precise tradeoff between privacy and utility. In other words, we provide a better
tool to analyze the privacy properties algorithms. In recently submitted joint work [BDRS17], I
have further refined these ideas to provide analytical tools that sharply capture all the important
properties of differential privacy, which I believe will make a real difference practically.

Optimal algorithms. Differential privacy establishes a standard for privacy, but we must also de-
velop algorithms meeting that standard. My work has produced optimal or near-optimal algorithms
for several well-studied problems.

The simplest algorithmic task is to answer several queries of the form “what fraction of the
dataset has property P?” The standard algorithm for this task is to independently distort each
answer using Gaussian or Laplacian noise. However, Jonathan Ullman and I showed [SU17a] that
this well-known algorithm is suboptimal by presenting two new algorithms that use non-independent
noise to achieve better accuracy. Furthermore, we showed that our algorithms are nearly-optimal
by proving matching lower bounds.

Most of the differential privacy literature provides “worst-case” accuracy guarantees that do not
depend on the data. In recent work, Feldman and I showed that it is possible to have the accuracy
scale with the standard deviation of the values in the dataset. This is the natural scale for accuracy
and, in many circumstances, this is significantly better than the worst-case bound.

If the queries are structured (such as having a low-dimensional domain), there are many more
sophisticated algorithms (e.g. [HR10]) that can exploit the dependencies between the queries to
attain better guarantees. My collaborators and I have developed an algorithm (based on [NTZ13,
et sequalae]) which, in certain parameter regimes, provides the best possible accuracy for any set
of queries; we are working to extend this to more parameter regimes and develop a geometric or
combinatorial characterization of the distortion needed for answering any given set of queries.

There is plenty of room for further research, particularly when it comes to developing com-
putationally efficient algorithms. I am hoping to import algorithmic ideas from sum-of-squares
literature [BM16] or use heuristic algorithms like MCMC or SAT solvers [GAH+14]. I am also keen
to collaborate to find better application-specific algorithms.

3 Statistically Valid Adaptive Data Analysis
A key problem in machine learning and empirical sciences is to infer properties of a large population
given only a small, random sample from that population. The challenge is ensuring statistical
validity – that is, ensuring that patterns observed in the sample generalize to the whole population,
rather than occurring in the sample by chance. There is a vast literature addressing this problem.
However, often the same sample dataset is reused for multiple analyses, where the outcomes of
earlier analyses can inform later analyses. This “adaptivity” introduces the danger that later
analyses may be tailored to the sample, thereby producing results that “overfit” the dataset in ways
that are difficult to account for.
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Adaptivity has been identified as a major problem that leads to flawed research in the empirical
sciences (sometimes referred to as “p-hacking” or “data dredging”) [Ioa05, SNS11, GL14].

Tight connection to differential privacy. Dwork et al. [DFH+15] provided the first nontrivial
results for handling adaptive data analysis by showing that differential privacy provides protection
against overfitting. With collaborators [BNS+16], I improved and extended the results of Dwork et
al. to obtain a quantitatively tight connection.

Furthermore, the above mentioned algorithms offer fixed accuracy guarantees that do not de-
pend on the data distribution. Feldman and I [FS17] showed that it is possible to have the accuracy
scale with the standard deviation of the values in the sample, which often yields significantly better
accuracy. Our results required altering the way differential privacy is applied and we are contin-
uing to simplify these results by looking at relaxations of differential privacy and developing an
information-theoretic approach to this area.

Overall, my goal is to push these results to obtain the strongest possible theoretical guarantees,
while also making the algorithms clean and simple so that they can easily be applied. I believe that
this connection between “stability” (in the form of differential privacy) and generalization may also
be useful for understanding generalization in other settings like deep learning [BE02, HRS16].

Sharp lower bounds. How much more difficult is adaptive data analysis than pre-specified non-
adaptive data analysis? Ullman and I [SU15] (improving [HU14]) gave a sharp impossibility result,
showing that the aforementioned algorithmic results are asymptotically optimal. In particular, this
gives an exponential separation between what is possible in the adaptive and non-adaptive settings.
These results require the use of cryptographic hardness assumptions and a combinatorial object
which we call interactive fingerprinting codes. In ongoing work, we are refining these results and
extending them to other settings.

4 Pseudorandomness
A fundamental tool – both practically and theoretically – is a pseudorandom generator. That is,
an efficient algorithm that takes as input a small number of random bits (the “seed”) and produces
many output bits that “look random.” Namely, no efficient algorithm should be able to distinguish
the generator’s output from truly uniform bits. In general, we can only construct pseudorandom
generators under unproven computational hardness assumptions [NW94]. Thus we consider weaker
classes of distinguishers. My work constructs generators whose output appears random to small-
space distinguishers.

Nisan [Nis92, INW94] showed that a O(log2 n)-bit seed is sufficient to produce n bits that
appear random to distinguishers using only O(log n) bits of memory space. This is a powerful
result; however, despite two decades of work, we have not succeeded in reducing the seed length
to O(log n). Although, there has been some progress for the further restricted classes of regular or
permutation branching programs [BRRY10, BV10, KNP11, De11], including my work [Ste12].

Given that these techniques seem to hit a barrier at O(log2 n), I believe that new techniques are
needed and my research aims to provide them.

Fourier-analytic pseudorandom generators. With Reingold, Vadhan, and Wan [RSV13,
SVW14], I developed pseudorandom generators for small space based on Fourier-analytic tech-
niques. Discrete Fourier analysis has been successful in constructing pseudorandom generators
for other classes of distinguishers [NN93, Bra08, Vio08, DGJ+10, GMR+12], but has had limited
application to small-space [BDVY13]. One advantage of our Fourier-analytic approach is that the
pseudorandomness property is invariant under permutations of the output bits of the pseudorandom
generator, which is a property that Nisan’s generator provably lacks [Tzu09].
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My work has inspired recent progress. My conjecture [RSV13] about the Fourier spectrum of
functions computable in small space was proved [CHRT17]. This implies that the pseudorandom
generator from my work applies to all constant-space computations. Also, the connection between
the Fourier spectrum and pseudorandomness that I developed was tightened [CHHL18]. I hope that
this is a catalyst for further progress and I intend to push these techniques as far possible.

5 Future Work
My research has several threads and I intend to continue developing all of these. I am also continually
seeking to develop new directions for research, which means always looking out for interesting
questions and, most importantly, enthusiastic collaborators. Below I outline where I see the main
threads of my work going in the future.

Differential privacy. Differential privacy is already having a real-world impact, but this is just
the tip of the iceberg. The aim of my research agenda is to help it reach its full potential.

As mentioned above, there are plenty of fruitful directions for theoretical work in differential
privacy – more accurate algorithms, more computationally efficient algorithms, sharper analytical
tools, tailoring algorithms to the structure of queries or distribution of the data, proving impossi-
bility results, understanding different application models (such as local differential privacy) – and I
intend to further pursue these directions.

However, applied work is equally important. Differential privacy needs to be incorporated into
larger systems and we need to develop more readily-useable code to help non-experts easily get
started in the area. I am particularly keen to organize inter-disciplinary collaborations (like the
PrivacyTools project I was involved in at Harvard). Such collaborations bring in new perspectives
and skills that help understand and overcome the challenges of deploying cutting-edge technology.

Another key task for differential privacy researchers is outreach. One of the biggest barriers
to adoption is convincing decision makers that differential privacy is the appropriate tool for their
problem (and convincing them that they have a problem, e.g., by demonstrating privacy attacks).
This requires reaching out to people with very different backgrounds, such as lawyers, medical
researchers, statisticians, and business executives. I have been engaged in this at Harvard and at
IBM and I hope to keep doing so. This can also be very enlightening as it requires understanding
different viewpoints and being realistic about the challenges we face in practice.

Generalization & adaptivity. Understanding generalization is a central question in machine
learning and statistics and the connection to differential privacy has added a new dimension to it.
I intend to delve further into this, particularly examining how it relates to previous methods for
understanding generalization (e.g. VC dimension) and how we can look a weaker notions of stability,
e.g., by using information theoretic approaches instead of differential privacy.

The application to adaptive data analysis is only one of the potential uses of differential privacy.
We can view differential privacy as providing generalization guarantees “for free,” which adds further
impetus to the use of differentially private algorithms. I am keen to find other uses. Connections to
algorithmic game theory and fairness in machine learning have already been explored and I would
like to explore these further

Pseudorandomness. There are many deep and longstanding open questions in pseudorandom-
ness. My favorite question is developing pseudorandom generators for small space (ideally strong
enough to imply RL = L). My research in this area has focused on applying new techniques to
this problem, namely discrete Fourier analysis (which has been very successful elsewhere in the
pseudorandomness literature). I believe that this approach will yield further results. Indeed, there
has been some very recent progress building on my work. I hope to be involved in continuing this
line of research.
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